論文の概要: Physics-Guided Deepfake Detection for Voice Authentication Systems
- arxiv url: http://arxiv.org/abs/2512.06040v1
- Date: Thu, 04 Dec 2025 23:37:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.164177
- Title: Physics-Guided Deepfake Detection for Voice Authentication Systems
- Title(参考訳): 物理誘導型音声認証システムのためのディープフェイク検出
- Authors: Alireza Mohammadi, Keshav Sood, Dhananjay Thiruvady, Asef Nazari,
- Abstract要約: エッジ学習における物理誘導型ディープフェイク検出と不確実性認識を結合したフレームワークを提案する。
このフレームワークは解釈可能な物理を融合し、自己教師付き学習モジュールからの表現を伴う声道力学をモデル化する。
- 参考スコア(独自算出の注目度): 3.823199329076498
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Voice authentication systems deployed at the network edge face dual threats: a) sophisticated deepfake synthesis attacks and b) control-plane poisoning in distributed federated learning protocols. We present a framework coupling physics-guided deepfake detection with uncertainty-aware in edge learning. The framework fuses interpretable physics features modeling vocal tract dynamics with representations coming from a self-supervised learning module. The representations are then processed via a Multi-Modal Ensemble Architecture, followed by a Bayesian ensemble providing uncertainty estimates. Incorporating physics-based characteristics evaluations and uncertainty estimates of audio samples allows our proposed framework to remain robust to both advanced deepfake attacks and sophisticated control-plane poisoning, addressing the complete threat model for networked voice authentication.
- Abstract(参考訳): ネットワークエッジに展開された音声認証システムは、二重脅威に直面している。
高度なディープフェイク合成攻撃と
ロ 分散連邦学習プロトコルにおける制御面中毒
エッジ学習における物理誘導型ディープフェイク検出と不確実性認識を結合したフレームワークを提案する。
このフレームワークは解釈可能な物理を融合し、自己教師付き学習モジュールからの表現を伴う声道力学をモデル化する。
それらの表現はマルチモーダル・アンサンブル・アーキテクチャによって処理され、続いてベイズアン・アンサンブルが不確かさを推定する。
物理特性評価と音声サンプルの不確実性評価を組み込むことにより,提案手法は高度なディープフェイク攻撃と高度制御プレーン中毒の両方に対して頑健であり,ネットワーク音声認証の完全な脅威モデルに対処できる。
関連論文リスト
- Zero-Shot Visual Deepfake Detection: Can AI Predict and Prevent Fake Content Before It's Created? [7.89029114152292]
デジタルセキュリティ、メディアの完全性、および公的な信頼に対するディープフェイクの脅威は急速に増加している。
本研究は、モデルが特定のディープフェイク変化を見たことがない場合でも、ゼロショットディープフェイク検出(ゼロショットディープフェイク検出)を新たに行う方法である。
論文 参考訳(メタデータ) (2025-09-22T22:33:16Z) - Deep Learning Models for Robust Facial Liveness Detection [56.08694048252482]
本研究では,現代のアンチスプーフィング手法の欠陥に対処する新しい深層学習モデルを用いて,ロバストな解を提案する。
テクスチャ解析と実際の人間の特性に関連する反射特性を革新的に統合することにより、我々のモデルは、顕著な精度でレプリカと真の存在を区別する。
論文 参考訳(メタデータ) (2025-08-12T17:19:20Z) - Unmasking Synthetic Realities in Generative AI: A Comprehensive Review of Adversarially Robust Deepfake Detection Systems [4.359154048799454]
ディープフェイク拡散合成メディアは、デジタルセキュリティ、誤情報緩和、アイデンティティ保護に挑戦する。
本研究の体系的レビューでは, 再現性のある実装の透明性と検証を重視した, 最先端のディープフェイク検出手法の評価を行う。
1) 統計的異常や階層的特徴抽出を利用した完全合成メディアの検出,(2) 視覚的アーティファクトや時間的不整合といったマルチモーダルな手がかりを用いた実コンテンツ中の操作された領域の局在化。
論文 参考訳(メタデータ) (2025-07-24T22:05:52Z) - FADEL: Uncertainty-aware Fake Audio Detection with Evidential Deep Learning [9.960675988638805]
顕在学習を用いた偽音声検出(FADEL)という新しいフレームワークを提案する。
FADELはモデルの不確実性を予測に組み込んでおり、OODシナリオではより堅牢なパフォーマンスを実現している。
本研究では,異なるスプーフィングアルゴリズム間の平均不確かさと等誤差率(EER)の強い相関関係を解析し,不確かさ推定の有効性を示す。
論文 参考訳(メタデータ) (2025-04-22T07:40:35Z) - T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
テキストからビデオモデルへの攻撃はジェイルブレイク攻撃に弱いため、特別な方法で安全メカニズムをバイパスし、有害または安全でないコンテンツの生成につながる。
我々は、ジェイルブレイクの脅威からテキストからビデオモデルを守るために設計された包括的でモデルに依存しない防衛フレームワークであるT2VShieldを提案する。
本手法は,既存の防御の限界を特定するために,入力,モデル,出力の段階を体系的に解析する。
論文 参考訳(メタデータ) (2025-04-22T01:18:42Z) - Anomaly Detection and Localization for Speech Deepfakes via Feature Pyramid Matching [8.466707742593078]
音声ディープフェイク(英: Speech Deepfakes)は、ターゲット話者の声を模倣できる合成音声信号である。
音声のディープフェイクを検出する既存の方法は教師あり学習に依存している。
本稿では,音声深度検出を異常検出タスクとして再設定する,新しい解釈可能な一クラス検出フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-23T11:15:22Z) - Where are we in audio deepfake detection? A systematic analysis over generative and detection models [59.09338266364506]
SONARはAI-Audio Detection FrameworkとBenchmarkの合成である。
最先端のAI合成聴覚コンテンツを識別するための総合的な評価を提供する。
従来のモデルベース検出システムと基礎モデルベース検出システムの両方で、AIオーディオ検出を均一にベンチマークする最初のフレームワークである。
論文 参考訳(メタデータ) (2024-10-06T01:03:42Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
既存のマルチモーダル検出手法は、Deepfakeビデオを公開するために、音声と視覚の不整合をキャプチャする。
NPVForensics と呼ばれる非臨界音素とビセムの相関関係を抽出する新しいディープフェイク検出法を提案する。
我々のモデルは、微調整で下流のDeepfakeデータセットに容易に適応できる。
論文 参考訳(メタデータ) (2023-06-12T06:06:05Z) - Defense Against Adversarial Attacks on Audio DeepFake Detection [0.4511923587827302]
Audio DeepFakes (DF) は、ディープラーニングを用いて人工的に生成された発話である。
脅威を防ぐために、生成された音声を検出する複数のニューラルネットワークベースの手法が提案されている。
論文 参考訳(メタデータ) (2022-12-30T08:41:06Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。