論文の概要: Fair Benchmarking of Optimisation Applications
- arxiv url: http://arxiv.org/abs/2512.07915v1
- Date: Mon, 08 Dec 2025 10:36:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-10 22:28:07.678252
- Title: Fair Benchmarking of Optimisation Applications
- Title(参考訳): 最適化アプリケーションの公正ベンチマーク
- Authors: Frank Phillipson,
- Abstract要約: 量子最適化は、古典派や専門ハードウェアと並んで有望なアプローチとして浮上している。
従来のベンチマーク手法は、量子とハイブリッドシステムの連続力学、確率的結果、ワークフローのオーバーヘッドを直接キャプチャするものではない。
本稿では,量子最適化の公正なベンチマークのための原理とプロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum optimisation is emerging as a promising approach alongside classical heuristics and specialised hardware, yet its performance is often difficult to assess fairly. Traditional benchmarking methods, rooted in digital complexity theory, do not directly capture the continuous dynamics, probabilistic outcomes, and workflow overheads of quantum and hybrid systems. This paper proposes principles and protocols for fair benchmarking of quantum optimisation, emphasising end-to-end workflows, transparency in tuning and reporting, problem diversity, and avoidance of speculative claims. By extending lessons from classical benchmarking and incorporating application-driven and energy-aware metrics, we outline a framework that enables practitioners to evaluate quantum methods responsibly, ensuring reproducibility, comparability, and trust in reported results.
- Abstract(参考訳): 量子最適化は古典的ヒューリスティックと特殊ハードウェアと並んで有望なアプローチとして浮上しているが、その性能を正確に評価することはしばしば困難である。
デジタル複雑性理論に根ざした従来のベンチマーク手法は、量子とハイブリッドシステムの連続力学、確率的結果、ワークフローのオーバーヘッドを直接キャプチャするものではない。
本稿では、量子最適化の公正なベンチマーク、エンドツーエンドワークフローの強調、チューニングとレポートの透明性、問題多様性、投機的クレームの回避に関する原則とプロトコルを提案する。
古典的なベンチマークから学んだことを拡張し、アプリケーション駆動とエネルギーを意識したメトリクスを取り入れることで、実践者が量子メソッドを責任を持って評価し、再現性、可視性、報告された結果に対する信頼を保証できるフレームワークを概説する。
関連論文リスト
- Deep Unfolding: Recent Developments, Theory, and Design Guidelines [99.63555420898554]
この記事では、最適化アルゴリズムを構造化されたトレーニング可能なMLアーキテクチャに変換するフレームワークであるDeep Unfoldingのチュートリアルスタイルの概要を提供する。
推論と学習のための最適化の基礎を概観し、深層展開のための4つの代表的な設計パラダイムを導入し、その反復的な性質から生じる特有なトレーニングスキームについて議論する。
論文 参考訳(メタデータ) (2025-12-03T13:16:35Z) - Reinforcement Learning for Quantum Network Control with Application-Driven Objectives [53.03367590211247]
動的プログラミングと強化学習は、制御戦略を最適化するための有望なツールを提供する。
非線形で微分可能な目的関数を直接最適化する新しいRLフレームワークを提案する。
我々の研究は、RLを持つ量子ネットワークにおける非線形目的関数最適化への第一歩であり、より高度なユースケースへの道を開く。
論文 参考訳(メタデータ) (2025-09-12T18:41:10Z) - TensorHyper-VQC: A Tensor-Train-Guided Hypernetwork for Robust and Scalable Variational Quantum Computing [50.95799256262098]
量子機械学習のための新しいテンソルトレイン(TT)誘導ハイパーネットワークフレームワークであるHyper-VQCを紹介する。
我々のフレームワークは、量子回路パラメータの生成を古典的なTTネットワークに委譲し、量子ハードウェアから最適化を効果的に分離する。
これらの結果から、Hyper-VQCは、短期デバイス上での実用的な量子機械学習を促進するためのスケーラブルで耐雑音性のあるフレームワークとして位置づけられる。
論文 参考訳(メタデータ) (2025-08-01T23:37:55Z) - Resource-Efficient Hadamard Test Circuits for Nonlinear Dynamics on a Trapped-Ion Quantum Computer [1.2063443893298391]
本稿では,Adamardテスト回路の低深さ実装を提案する。
我々は変分アルゴリズムに特化してパラメータ化量子アンサッツを開発した。
以上の結果より,シングルビットゲート数と2ビットゲート数が有意に減少した。
論文 参考訳(メタデータ) (2025-07-25T13:16:54Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
ノイズは、信頼できる量子アルゴリズムを達成するための大きな障害である。
本稿では,パラメータ化量子回路分類器のロバスト性を高めるための雑音耐性学習理論とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-24T02:51:34Z) - An Accurate and Efficient Analytic Model of Fidelity Under Depolarizing Noise Oriented to Large Scale Quantum System Design [1.80755313284025]
本稿では,分極雑音下での量子回路の忠実度を予測するための包括的な理論的枠組みを提案する。
デバイスキャリブレーションデータに基づく効率的な忠実度推定アルゴリズムを提案する。
提案するアプローチは、量子ハードウェアをベンチマークするためのスケーラブルで実用的なツールを提供する。
論文 参考訳(メタデータ) (2025-03-09T16:59:24Z) - Pseudo-Bayesian Optimization [7.556071491014536]
ブラックボックス最適化の収束を保証するために最小限の要件を課す公理的枠組みについて検討する。
我々は、単純な局所回帰と、不確実性を定量化するために適切な「ランダム化事前」構造を用いることが、収束を保証するだけでなく、常に最先端のベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-15T07:55:28Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。