論文の概要: Systematization of Knowledge: Security and Safety in the Model Context Protocol Ecosystem
- arxiv url: http://arxiv.org/abs/2512.08290v2
- Date: Sat, 13 Dec 2025 20:37:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 15:10:29.136796
- Title: Systematization of Knowledge: Security and Safety in the Model Context Protocol Ecosystem
- Title(参考訳): 知識の体系化:モデルコンテキストプロトコルエコシステムにおけるセキュリティと安全性
- Authors: Shiva Gaire, Srijan Gyawali, Saroj Mishra, Suman Niroula, Dilip Thakur, Umesh Yadav,
- Abstract要約: Model Context Protocol(MCP)は、大規模言語モデルを外部データやツールに接続するためのデファクトスタンダードとして登場した。
本稿では,MCP生態系のリスクを分類し,敵のセキュリティ脅威と安全リスクを区別する。
マルチエージェント環境において、"コンテキスト"を兵器化して、不正な操作をトリガーする方法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Model Context Protocol (MCP) has emerged as the de facto standard for connecting Large Language Models (LLMs) to external data and tools, effectively functioning as the "USB-C for Agentic AI." While this decoupling of context and execution solves critical interoperability challenges, it introduces a profound new threat landscape where the boundary between epistemic errors (hallucinations) and security breaches (unauthorized actions) dissolves. This Systematization of Knowledge (SoK) aims to provide a comprehensive taxonomy of risks in the MCP ecosystem, distinguishing between adversarial security threats (e.g., indirect prompt injection, tool poisoning) and epistemic safety hazards (e.g., alignment failures in distributed tool delegation). We analyze the structural vulnerabilities of MCP primitives, specifically Resources, Prompts, and Tools, and demonstrate how "context" can be weaponized to trigger unauthorized operations in multi-agent environments. Furthermore, we survey state-of-the-art defenses, ranging from cryptographic provenance (ETDI) to runtime intent verification, and conclude with a roadmap for securing the transition from conversational chatbots to autonomous agentic operating systems.
- Abstract(参考訳): Model Context Protocol(MCP)は、Large Language Models(LLM)を外部データやツールに接続するデファクトスタンダードとして登場し、事実上「エージェントAIのためのUSB-C」として機能している。
このようなコンテキストと実行の分離は、重要な相互運用性の課題を解決しますが、エピステマティックエラー(幻覚)とセキュリティ違反(無許可のアクション)の境界が解消する、深刻な新たな脅威の風景を導入します。
このシステム化・オブ・ナレッジ(SoK)は、MSPエコシステムにおけるリスクの包括的分類を提供することを目的としており、敵のセキュリティ脅威(例えば、間接的インジェクション、ツール中毒)と疫学の安全リスク(例えば、分散ツールデリゲーションにおけるアライメント障害)を区別することを目的としている。
我々は、MPPプリミティブ、特にResources、Prompts、Toolsの構造的脆弱性を分析し、マルチエージェント環境での不正操作を誘発するために「コンテキスト」をどのように武器化できるかを実証する。
さらに,暗号実証(ETDI)から実行意図検証まで,最先端の防衛状況を調査し,対話型チャットボットから自律型エージェントオペレーティングシステムへの移行を保証するロードマップをまとめる。
関連論文リスト
- OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows [77.95511352806261]
VLM(Vision-Language Models)を利用したコンピュータ利用エージェントは、モバイルプラットフォームのようなデジタル環境を操作する上で、人間のような能力を実証している。
我々は,明示的なシステムレベルの違反を検出するための形式検証器と,文脈的リスクとエージェント行動を評価するコンテキスト判断器を組み合わせた,新しいハイブリッド安全検出フレームワークOS-Sentinelを提案する。
論文 参考訳(メタデータ) (2025-10-28T13:22:39Z) - MCPGuard : Automatically Detecting Vulnerabilities in MCP Servers [16.620755774987774]
Model Context Protocol(MCP)は、LLM(Large Language Models)と外部データソースとツールのシームレスな統合を可能にする標準化されたインターフェースとして登場した。
本稿では,3つの主要な脅威カテゴリを識別し,MCPベースのシステムのセキュリティ状況を体系的に解析する。
論文 参考訳(メタデータ) (2025-10-27T05:12:51Z) - Towards Unifying Quantitative Security Benchmarking for Multi Agent Systems [0.0]
AIシステムの進化 自律エージェントが協力し、情報を共有し、プロトコルを開発することでタスクを委譲するマルチエージェントアーキテクチャをますます展開する。
そのようなリスクの1つはカスケードリスクである。あるエージェントの侵入はシステムを通してカスケードし、エージェント間の信頼を利用して他人を妥協させる。
ACI攻撃では、あるエージェントに悪意のあるインプットまたはツールエクスプロイトが注入され、そのアウトプットを信頼するエージェント間でカスケードの妥協とダウンストリーム効果が増幅される。
論文 参考訳(メタデータ) (2025-07-23T13:51:28Z) - SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents [58.21223208538351]
本研究は,モバイルマルチモーダルエージェントを取り巻くセキュリティ問題について考察する。
行動シーケンス情報を組み込んだリスク識別機構の構築を試みる。
また、大規模言語モデルに基づく自動アセスメントスキームも設計している。
論文 参考訳(メタデータ) (2025-07-01T15:10:00Z) - From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows [1.202155693533555]
構造化関数呼び出しインタフェースを持つ大規模言語モデル(LLM)は、リアルタイムデータ検索と計算機能を大幅に拡張した。
しかし、プラグイン、コネクター、エージェント間プロトコルの爆発的な増殖は、発見メカニズムやセキュリティプラクティスよりも大きくなっている。
ホスト・ツー・ツールとエージェント・ツー・エージェント・エージェントの通信にまたがる,LDM-エージェントエコシステムに対する最初の統一エンドツーエンド脅威モデルを導入する。
論文 参考訳(メタデータ) (2025-06-29T14:32:32Z) - AGENTSAFE: Benchmarking the Safety of Embodied Agents on Hazardous Instructions [64.85086226439954]
本稿では,有害な指示に対するVLMエージェントの安全性を評価するためのベンチマークであるSAFEを提案する。
SAFEは、SAFE−THOR、SAFE−VERSE、SAFE−DIAGNOSEの3つの成分からなる。
我々は、ハザード認識を安全な計画と実行に翻訳する体系的な失敗を明らかにする。
論文 参考訳(メタデータ) (2025-06-17T16:37:35Z) - A Proposal for Evaluating the Operational Risk for ChatBots based on Large Language Models [39.58317527488534]
3つの主要なステークホルダーに対する潜在的な脅威を同時に評価する新しいリスク評価指標を提案する。
メトリクスを検証するために、脆弱性テスト用のオープンソースのフレームワークであるGarakを活用しています。
その結果、セキュアで信頼性の高いAI駆動会話システムの運用における多次元リスクアセスメントの重要性が浮き彫りになった。
論文 参考訳(メタデータ) (2025-05-07T20:26:45Z) - Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents [36.49717045080722]
本稿では,ブロックチェーンベースの金融エコシステムにおけるAIエージェントの脆弱性を,現実のシナリオにおける敵対的脅威に曝露した場合に検討する。
保護されていないコンテキストサーフェスを利用する包括的攻撃ベクトルであるコンテキスト操作の概念を導入する。
ElizaOSを使用することで、不正なインジェクションをプロンプトや履歴レコードに注入することで、不正なアセット転送やプロトコル違反が引き起こされることを示す。
論文 参考訳(メタデータ) (2025-03-20T15:44:31Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - Trojaning Language Models for Fun and Profit [53.45727748224679]
TROJAN-LMは、悪質に製作されたLMがホストNLPシステムを故障させる新しいタイプのトロイの木馬攻撃である。
セキュリティクリティカルなNLPタスクにおいて、3つの最先端のLMを実証的に研究することにより、TROJAN-LMが以下の特性を持つことを示す。
論文 参考訳(メタデータ) (2020-08-01T18:22:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。