論文の概要: A Categorical Analysis of Large Language Models and Why LLMs Circumvent the Symbol Grounding Problem
- arxiv url: http://arxiv.org/abs/2512.09117v1
- Date: Tue, 09 Dec 2025 20:59:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-11 15:14:53.322098
- Title: A Categorical Analysis of Large Language Models and Why LLMs Circumvent the Symbol Grounding Problem
- Title(参考訳): 大規模言語モデルのカテゴリー分析とLLMが記号接地問題を回避する理由
- Authors: Luciano Floridi, Yiyang Jia, Fernando Tohmé,
- Abstract要約: 本稿では、人間と大言語モデル(LLM)が、どのようにコンテンツを真に評価できる世界Wの状態空間に関する命題に変換するかを分析するための、形式的で分類的な枠組みを提案する。
- 参考スコア(独自算出の注目度): 42.47842694670572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a formal, categorical framework for analysing how humans and large language models (LLMs) transform content into truth-evaluated propositions about a state space of possible worlds W , in order to argue that LLMs do not solve but circumvent the symbol grounding problem.
- Abstract(参考訳): 本稿では,人間と大言語モデル(LLM)が,LLMが解決せず,シンボル基底問題を回避するために,可能世界の状態空間に関する真理評価命題にどのように変換するかを解析するための形式的,分類的な枠組みを提案する。
関連論文リスト
- Evaluating Large Language Models for Real-World Engineering Tasks [75.97299249823972]
本稿では,実運用指向のエンジニアリングシナリオから得られた100以上の質問をキュレートしたデータベースを提案する。
このデータセットを用いて、4つの最先端の大規模言語モデル(LLM)を評価する。
以上の結果から,LLMは時間的および構造的推論において強みを示すが,抽象的推論や形式的モデリング,文脈に敏感な工学的論理にはかなり苦労することがわかった。
論文 参考訳(メタデータ) (2025-05-12T14:05:23Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis [5.029635172046762]
言語融合(Language Confusion)とは、大言語モデル(LLM)が所望の言語でもなく、文脈的に適切な言語でもテキストを生成する現象である。
我々は,この混乱を計測し定量化するために設計された,新しい計量であるLanguage Confusion Entropyを導入する。
論文 参考訳(メタデータ) (2024-10-17T05:43:30Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
空間推論は 生物学的と人工知能の両方において 重要な要素です
本稿では,現在最先端の大規模言語モデル (LLM) の空間的推論能力について包括的に検討する。
論文 参考訳(メタデータ) (2024-06-07T01:06:34Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Stochastic LLMs do not Understand Language: Towards Symbolic,
Explainable and Ontologically Based LLMs [0.0]
データ駆動型大規模言語モデル(LLM)の相対的な成功は象徴的対準記号的議論の反映ではないと我々は主張する。
本稿では,記号的,説明可能な,存在論的に基礎を成す言語モデルに,効果的なボトムアップ戦略を適用することを提案する。
論文 参考訳(メタデータ) (2023-09-12T02:14:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。