論文の概要: TriDF: Evaluating Perception, Detection, and Hallucination for Interpretable DeepFake Detection
- arxiv url: http://arxiv.org/abs/2512.10652v1
- Date: Thu, 11 Dec 2025 14:01:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.389425
- Title: TriDF: Evaluating Perception, Detection, and Hallucination for Interpretable DeepFake Detection
- Title(参考訳): TriDF:解釈可能なディープフェイク検出のための知覚・検出・幻覚の評価
- Authors: Jian-Yu Jiang-Lin, Kang-Yang Huang, Ling Zou, Ling Lo, Sheng-Ping Yang, Yu-Wen Tseng, Kun-Hsiang Lin, Chia-Ling Chen, Yu-Ting Ta, Yan-Tsung Wang, Po-Ching Chen, Hongxia Xie, Hong-Han Shuai, Wen-Huang Cheng,
- Abstract要約: TriDFはDeepFake検出の解釈可能なベンチマークである。
本稿では,DeepFake検出のための総合的なベンチマークであるTriDFを紹介する。
- 参考スコア(独自算出の注目度): 28.635829897413416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in generative modeling have made it increasingly easy to fabricate realistic portrayals of individuals, creating serious risks for security, communication, and public trust. Detecting such person-driven manipulations requires systems that not only distinguish altered content from authentic media but also provide clear and reliable reasoning. In this paper, we introduce TriDF, a comprehensive benchmark for interpretable DeepFake detection. TriDF contains high-quality forgeries from advanced synthesis models, covering 16 DeepFake types across image, video, and audio modalities. The benchmark evaluates three key aspects: Perception, which measures the ability of a model to identify fine-grained manipulation artifacts using human-annotated evidence; Detection, which assesses classification performance across diverse forgery families and generators; and Hallucination, which quantifies the reliability of model-generated explanations. Experiments on state-of-the-art multimodal large language models show that accurate perception is essential for reliable detection, but hallucination can severely disrupt decision-making, revealing the interdependence of these three aspects. TriDF provides a unified framework for understanding the interaction between detection accuracy, evidence identification, and explanation reliability, offering a foundation for building trustworthy systems that address real-world synthetic media threats.
- Abstract(参考訳): 生成モデリングの進歩により、個人の現実的な描写を制作しやすくなり、セキュリティ、コミュニケーション、および公衆信頼に対する重大なリスクを生み出している。
このような人による操作を検出するには、修正されたコンテンツを本物のメディアと区別するだけでなく、明確で信頼性の高い推論を提供するシステムが必要である。
本稿では,DeepFake検出のための総合的なベンチマークであるTriDFを紹介する。
TriDFには、高度な合成モデルによる高品質なフォージェリーが含まれており、画像、ビデオ、オーディオのモダリティにまたがる16のDeepFakeタイプをカバーしている。
このベンチマークは、3つの重要な側面を評価している:知覚(Perception)、人間による注釈付きエビデンスを用いたきめ細かい工芸品の識別能力を測定する能力を測定すること、様々な偽造家やジェネレータの分類性能を評価する検出、モデル生成の説明の信頼性を定量化する幻覚(Halucination)。
最先端のマルチモーダルな大規模言語モデルの実験では、正確な認識は信頼性の高い検出には不可欠であるが、幻覚は意思決定を著しく破壊し、これらの3つの側面の相互依存を明らかにしている。
TriDFは、検出精度、証拠確認、説明信頼性の間の相互作用を理解するための統一されたフレームワークを提供し、現実世界の合成メディア脅威に対処する信頼できるシステムを構築するための基盤を提供する。
関連論文リスト
- Deep Learning Models for Robust Facial Liveness Detection [56.08694048252482]
本研究では,現代のアンチスプーフィング手法の欠陥に対処する新しい深層学習モデルを用いて,ロバストな解を提案する。
テクスチャ解析と実際の人間の特性に関連する反射特性を革新的に統合することにより、我々のモデルは、顕著な精度でレプリカと真の存在を区別する。
論文 参考訳(メタデータ) (2025-08-12T17:19:20Z) - From Prediction to Explanation: Multimodal, Explainable, and Interactive Deepfake Detection Framework for Non-Expert Users [21.627851460651968]
DF-P2E(Deepfake: Prediction to Explanation)は、視覚的、意味的、物語的な説明層を統合して、ディープフェイク検出を解釈し、アクセス可能にする新しいフレームワークである。
現在最も多様なディープフェイクデータセットであるDF40ベンチマークで、フレームワークをインスタンス化し、評価しています。
実験により,Grad-CAMアクティベーションに適合した高品質な説明を提供しながら,競合検出性能を実証した。
論文 参考訳(メタデータ) (2025-08-11T03:55:47Z) - Unmasking Synthetic Realities in Generative AI: A Comprehensive Review of Adversarially Robust Deepfake Detection Systems [4.359154048799454]
ディープフェイク拡散合成メディアは、デジタルセキュリティ、誤情報緩和、アイデンティティ保護に挑戦する。
本研究の体系的レビューでは, 再現性のある実装の透明性と検証を重視した, 最先端のディープフェイク検出手法の評価を行う。
1) 統計的異常や階層的特徴抽出を利用した完全合成メディアの検出,(2) 視覚的アーティファクトや時間的不整合といったマルチモーダルな手がかりを用いた実コンテンツ中の操作された領域の局在化。
論文 参考訳(メタデータ) (2025-07-24T22:05:52Z) - FAME: A Lightweight Spatio-Temporal Network for Model Attribution of Face-Swap Deepfakes [9.462613446025001]
フェイスフェイクのDeepfakeビデオは、デジタルセキュリティ、プライバシー、メディアの整合性へのリスクが高まる。
FAMEは、異なる顔生成モデルに特有の微妙なアーティファクトをキャプチャするために設計されたフレームワークである。
結果は、FAMEが既存のメソッドを精度と実行時の両方で一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2025-06-13T05:47:09Z) - LLMs Are Not Yet Ready for Deepfake Image Detection [8.364956401923108]
視覚言語モデル(VLM)は、様々な領域にまたがる有望なツールとして登場した。
本研究は, ファスワップ, 再現, 合成生成の3つの主要なディープフェイクタイプに焦点を当てた。
解析の結果、VLMはコヒーレントな説明を生成でき、表面レベルの異常を検出できるが、スタンドアロン検出システムとしてはまだ信頼できないことが示唆された。
論文 参考訳(メタデータ) (2025-06-12T08:27:24Z) - SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model [48.547599530927926]
ソーシャルメディア上で共有される合成画像は、広範囲の聴衆を誤解させ、デジタルコンテンツに対する信頼を損なう可能性がある。
ソーシャルメディア画像検出データセット(SID-Set)を紹介する。
本稿では,SIDA という画像深度検出,局所化,説明の枠組みを提案する。
論文 参考訳(メタデータ) (2024-12-05T16:12:25Z) - On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [68.62012304574012]
マルチモーダル生成モデルは 信頼性 公正性 誤用の可能性について 批判的な議論を巻き起こしました
埋め込み空間におけるグローバルおよびローカルな摂動に対する応答を解析し、モデルの信頼性を評価するための評価フレームワークを提案する。
提案手法は, 信頼できない, バイアス注入されたモデルを検出し, 組込みバイアスの証明をトレースするための基礎となる。
論文 参考訳(メタデータ) (2024-11-21T09:46:55Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。