論文の概要: Bayesian Symbolic Regression via Posterior Sampling
- arxiv url: http://arxiv.org/abs/2512.10849v1
- Date: Thu, 11 Dec 2025 17:38:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.489115
- Title: Bayesian Symbolic Regression via Posterior Sampling
- Title(参考訳): 後方サンプリングによるベイジアンシンボリック回帰
- Authors: Geoffrey F. Bomarito, Patrick E. Leser,
- Abstract要約: 記号回帰はデータから直接支配方程式を発見する強力なツールであるが、ノイズに対する感度はより広い応用を妨げる。
本稿では,記号表現上の後部分布を近似したベイズ記号回帰のための逐次モンテカルロフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Symbolic regression is a powerful tool for discovering governing equations directly from data, but its sensitivity to noise hinders its broader application. This paper introduces a Sequential Monte Carlo (SMC) framework for Bayesian symbolic regression that approximates the posterior distribution over symbolic expressions, enhancing robustness and enabling uncertainty quantification for symbolic regression in the presence of noise. Differing from traditional genetic programming approaches, the SMC-based algorithm combines probabilistic selection, adaptive tempering, and the use of normalized marginal likelihood to efficiently explore the search space of symbolic expressions, yielding parsimonious expressions with improved generalization. When compared to standard genetic programming baselines, the proposed method better deals with challenging, noisy benchmark datasets. The reduced tendency to overfit and enhanced ability to discover accurate and interpretable equations paves the way for more robust symbolic regression in scientific discovery and engineering design applications.
- Abstract(参考訳): 記号回帰はデータから直接支配方程式を発見する強力なツールであるが、ノイズに対する感度はより広い応用を妨げる。
本稿では,記号表現上の後続分布を近似し,ロバスト性を高め,雑音の存在下での記号回帰の不確実性定量化を可能にする,ベイズ記号回帰のための逐次モンテカルロ(SMC)フレームワークを提案する。
従来の遺伝的プログラミングのアプローチと異なり、SMCベースのアルゴリズムは確率的選択、適応的テンパリング、および正規化された辺縁性を利用して記号表現の探索空間を効率的に探索し、一般化を改良した擬似表現を生み出す。
標準的な遺伝的プログラミングのベースラインと比較すると、提案手法は困難でノイズの多いベンチマークデータセットを扱うのがよい。
過度に適合する傾向の減少と、正確で解釈可能な方程式を発見する能力の強化は、科学的な発見と工学的設計の応用において、より堅牢な象徴的回帰の道を開く。
関連論文リスト
- Hierarchical Bayesian Operator-induced Symbolic Regression Trees for Structural Learning of Scientific Expressions [3.8545239266455185]
我々は,木構造的記号表現のアンサンブルとして科学法則を表す記号回帰の階層的ベイズ的枠組みを開発する。
我々はベイズ後部濃度の最小値に近い値を確立し、シンボル回帰の文脈で最初の厳密な保証を提供する。
実験的な評価は,提案手法の最先端の競合モジュールに対する堅牢な性能を示す。
論文 参考訳(メタデータ) (2025-09-24T02:42:25Z) - Discovering Mathematical Equations with Diffusion Language Model [6.384075523245284]
本稿では,連続状態拡散言語モデルに基づくシンボル回帰のための事前学習フレームワークであるDiffuSRを紹介する。
DrouSRは、離散的な数学的シンボルを連続的な潜在空間にマッピングするために、拡散過程内にトレーニング可能な埋め込み層を用いる。
また,拡散型方程式生成器の精度を高めるための効果的な推論戦略を設計する。
論文 参考訳(メタデータ) (2025-09-16T14:53:44Z) - Interactive Symbolic Regression through Offline Reinforcement Learning: A Co-Design Framework [11.804368618793273]
シンボリック回帰は、観測データから基礎となる数学的および物理的関係を明らかにする大きな可能性を秘めている。
現在の最先端のアプローチは、通常、ドメインエキスパートの事前知識の統合を考慮していない。
本稿では,大規模な記号回帰のための高度な対話型フレームワークであるSym-Qを提案する。
論文 参考訳(メタデータ) (2024-02-07T22:53:54Z) - Deep Generative Symbolic Regression [83.04219479605801]
記号回帰は、データから簡潔な閉形式数学的方程式を発見することを目的としている。
既存の手法は、探索から強化学習まで、入力変数の数に応じてスケールできない。
本稿では,我々のフレームワークであるDeep Generative Symbolic Regressionのインスタンス化を提案する。
論文 参考訳(メタデータ) (2023-12-30T17:05:31Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
この研究は、初めて合成に基づくアプローチがこの問題にうまく対応できることを示した。
具体的には,離散シンボルの認識に基づく音声分離/強調モデルを提案する。
離散シンボルの入力による合成モデルを利用することで、離散シンボル列の予測後、各ターゲット音声を再合成することができる。
論文 参考訳(メタデータ) (2021-12-17T08:35:40Z) - SymbolicGPT: A Generative Transformer Model for Symbolic Regression [3.685455441300801]
シンボル回帰のための新しいトランスフォーマーベース言語モデルであるSybolicGPTを提案する。
本モデルでは,精度,実行時間,データ効率に関して,競合モデルと比較して高い性能を示す。
論文 参考訳(メタデータ) (2021-06-27T03:26:35Z) - Neural Symbolic Regression that Scales [58.45115548924735]
本稿では,大規模事前学習を利用した最初の記号回帰手法を提案する。
我々は,非有界な方程式の集合を手続き的に生成し,同時にインプット・アウトプット・ペアの集合からシンボル方程式を予測するためにトランスフォーマーを事前訓練する。
論文 参考訳(メタデータ) (2021-06-11T14:35:22Z) - AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
modularity [8.594811303203581]
本稿では,Pareto-Optimal式にデータを適合させようとする記号回帰法の改良について述べる。
これは、通常、ノイズや悪いデータに対して、桁違いに堅牢であることによって、過去の最先端を改善する。
ニューラルネットワークの勾配特性から一般化対称性を発見する手法を開発した。
論文 参考訳(メタデータ) (2020-06-18T18:01:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。