論文の概要: Weakly Supervised Tuberculosis Localization in Chest X-rays through Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2512.11057v1
- Date: Thu, 11 Dec 2025 19:13:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-15 15:48:11.537961
- Title: Weakly Supervised Tuberculosis Localization in Chest X-rays through Knowledge Distillation
- Title(参考訳): 知識蒸留による胸部X線結核の局在の監視
- Authors: Marshal Ashif Shawkat, Moidul Hasan, Taufiq Hasan,
- Abstract要約: 本研究は, 知識蒸留技術を用いて, CNNモデルの訓練を行い, 予備的相関を低減し, TB関連異常の局在化を図る。
ResNet50アーキテクチャで教師/学生のフレームワークを活用することで、提案手法は印象的な0.2428 mIOUのスコアを達成できる。
- 参考スコア(独自算出の注目度): 1.3840552252620457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tuberculosis (TB) remains one of the leading causes of mortality worldwide, particularly in resource-limited countries. Chest X-ray (CXR) imaging serves as an accessible and cost-effective diagnostic tool but requires expert interpretation, which is often unavailable. Although machine learning models have shown high performance in TB classification, they often depend on spurious correlations and fail to generalize. Besides, building large datasets featuring high-quality annotations for medical images demands substantial resources and input from domain specialists, and typically involves several annotators reaching agreement, which results in enormous financial and logistical expenses. This study repurposes knowledge distillation technique to train CNN models reducing spurious correlations and localize TB-related abnormalities without requiring bounding-box annotations. By leveraging a teacher-student framework with ResNet50 architecture, the proposed method trained on TBX11k dataset achieve impressive 0.2428 mIOU score. Experimental results further reveal that the student model consistently outperforms the teacher, underscoring improved robustness and potential for broader clinical deployment in diverse settings.
- Abstract(参考訳): 結核(TB)は、特に資源に制限された国々において、世界中で死亡率の高い原因の1つとなっている。
胸部X線画像(CXR)は、アクセシブルで費用対効果の高い診断ツールとして機能するが、専門家による解釈が必要であり、しばしば利用できない。
機械学習モデルはTB分類において高い性能を示しているが、しばしば素早い相関に依存し、一般化に失敗する。
さらに、医用画像のための高品質なアノテーションを特徴とする大規模なデータセットを構築するには、相当なリソースとドメインの専門家からの入力が必要であり、典型的には、合意に達するアノテータが何人か必要であり、その結果、巨額の財政的・物流的費用が発生する。
本研究は,知識蒸留技術を用いて,境界ボックスアノテーションを必要とせずに,スプリアス相関を低減し,TB関連異常を局在させるCNNモデルを訓練する。
ResNet50アーキテクチャで教師/学生のフレームワークを活用することで、TBX11kデータセットでトレーニングされた提案手法は印象的な0.2428 mIOUのスコアを得た。
さらに実験結果から, 学生モデルは教師より一貫して優れており, 堅牢性の向上と, 多様な環境における幅広い臨床展開の可能性が示唆された。
関連論文リスト
- An Explainable Hybrid AI Framework for Enhanced Tuberculosis and Symptom Detection [55.35661671061754]
結核は、特に資源に制限された遠隔地において、重要な世界的な健康問題である。
本稿では, 胸部X線による疾患および症状の検出を, 2つの頭部と自己監督頭部を統合することで促進する枠組みを提案する。
本モデルでは, 新型コロナウイルス, 結核, 正常症例の鑑別で98.85%の精度が得られ, マルチラベル症状検出では90.09%のマクロF1スコアが得られた。
論文 参考訳(メタデータ) (2025-10-21T17:18:55Z) - Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data [0.0]
本研究では,SIGLIPとGemma-3bアーキテクチャを併用したVLM(Vision-Language Model)を提案する。
VLMは胸部X線からの視覚データを臨床コンテキストと組み合わせて、詳細なコンテキスト認識診断レポートを生成する。
結石,空洞,結節などの急性TBの病態は,高い精度とリコールで検出された。
論文 参考訳(メタデータ) (2025-03-17T14:08:35Z) - Learning Through Guidance: Knowledge Distillation for Endoscopic Image
Classification [40.366659911178964]
内視鏡は消化管(GI)の根底にある異常を同定する上で重要な役割を担っている。
ディープラーニング、特にCNN(Convolution Neural Networks)は、従来の機能エンジニアリングを使わずに自動機能学習を実行するように設計されている。
KDに基づく3つの学習フレームワーク、応答ベース、特徴ベース、関係ベースメカニズムについて検討し、関係ベース学習を支援するために、新しい多面的注意型特徴融合機構を導入する。
論文 参考訳(メタデータ) (2023-08-17T02:02:11Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Localization of Critical Findings in Chest X-Ray without Local
Annotations Using Multi-Instance Learning [0.0]
ディープラーニングモデルは説明責任の欠如に苦しむことが多い。
ディープラーニングモデルは、ピクセルレベルラベルやバウンディングボックス座標のような、局所的なアノテートされたトレーニングデータを必要とする。
本研究では,マルチインスタンス学習に基づく解釈可能なDLアルゴリズムを用いて,これらの欠点に対処する。
論文 参考訳(メタデータ) (2020-01-23T21:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。