論文の概要: Autotune: fast, accurate, and automatic tuning parameter selection for Lasso
- arxiv url: http://arxiv.org/abs/2512.11139v2
- Date: Mon, 15 Dec 2025 18:16:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 15:10:29.250044
- Title: Autotune: fast, accurate, and automatic tuning parameter selection for Lasso
- Title(参考訳): Autotune: Lassoの高速、高精度、自動チューニングパラメータ選択
- Authors: Tathagata Sadhukhan, Ines Wilms, Stephan Smeekes, Sumanta Basu,
- Abstract要約: $mathsfautotune$はLassoが自動的にチューニングする戦略だ。
$mathsfautotune$は、ノイズ標準偏差の新しい推定器を提供する。
C++ベースのRパッケージもGithubで公開されている。
- 参考スコア(独自算出の注目度): 0.8574682463936006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Least absolute shrinkage and selection operator (Lasso), a popular method for high-dimensional regression, is now used widely for estimating high-dimensional time series models such as the vector autoregression (VAR). Selecting its tuning parameter efficiently and accurately remains a challenge, despite the abundance of available methods for doing so. We propose $\mathsf{autotune}$, a strategy for Lasso to automatically tune itself by optimizing a penalized Gaussian log-likelihood alternately over regression coefficients and noise standard deviation. Using extensive simulation experiments on regression and VAR models, we show that $\mathsf{autotune}$ is faster, and provides better generalization and model selection than established alternatives in low signal-to-noise regimes. In the process, $\mathsf{autotune}$ provides a new estimator of noise standard deviation that can be used for high-dimensional inference, and a new visual diagnostic procedure for checking the sparsity assumption on regression coefficients. Finally, we demonstrate the utility of $\mathsf{autotune}$ on a real-world financial data set. An R package based on C++ is also made publicly available on Github.
- Abstract(参考訳): 最大絶対収縮・選択演算子(Lasso)は高次元回帰の一般的な方法であり、ベクトル自己回帰(VAR)のような高次元時系列モデルの推定に広く用いられている。
チューニングパラメータを効率的に正確に選択することは、利用可能な方法がたくさんあるにもかかわらず、依然として課題である。
我々は、回帰係数とノイズ標準偏差を交互に比較して、ガウス対数のようなペナル化を最適化することで、Lassoの自己調整戦略である$\mathsf{autotune}$を提案する。
回帰モデルとVARモデルに関する広範なシミュレーション実験を用いて、$\mathsf{autotune}$はより高速であり、低信号対雑音系における確立された代替手段よりも優れた一般化とモデル選択を提供することを示した。
この過程において、$\mathsf{autotune}$は、高次元推論に使用できるノイズ標準偏差の新しい推定器と、回帰係数の空間的仮定をチェックするための新しい視覚的診断手順を提供する。
最後に、実世界の金融データセット上で$\mathsf{autotune}$の効用を実証する。
C++ベースのRパッケージもGithubで公開されている。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Coarse Graining with Neural Operators for Simulating Chaotic Systems [78.64101336150419]
カオスシステムの長期的挙動を予測することは、気候モデリングなどの様々な応用に不可欠である。
このような完全解法シミュレーションに対する別のアプローチは、粗いグリッドを使用して、時間テキストモデルによってエラーを修正することである。
この制限を克服する物理インフォームド・ニューラル演算子(PINO)を用いたエンド・ツー・エンドの学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-09T17:05:45Z) - Uncertainty quantification for iterative algorithms in linear models with application to early stopping [4.150180443030652]
本稿では,高次元線形回帰問題における反復アルゴリズムから得られた繰り返し$hbb1,dots,hbbT$について検討する。
解析および提案した推定器は、GD(Gradient Descent)、GD(GD)およびFast Iterative Soft-Thresholding(FISTA)などの加速変種に適用できる。
論文 参考訳(メタデータ) (2024-04-27T10:20:41Z) - Streaming Sparse Linear Regression [1.8707139489039097]
本稿では,データポイントが逐次到着したときのストリーミングデータを解析する新しいオンライン疎線形回帰フレームワークを提案する。
提案手法はメモリ効率が高く,厳密な制約付き凸性仮定を必要とする。
論文 参考訳(メタデータ) (2022-11-11T07:31:55Z) - A Conditional Randomization Test for Sparse Logistic Regression in
High-Dimension [36.00360315353985]
emphCRT-logitは、変数蒸留ステップとデコレーションステップを組み合わせたアルゴリズムである。
本手法の理論的解析を行い,大規模な脳画像とゲノムデータセットの実験とともにシミュレーションにおける有効性を示す。
論文 参考訳(メタデータ) (2022-05-29T09:37:16Z) - Fast variable selection makes scalable Gaussian process BSS-ANOVA a
speedy and accurate choice for tabular and time series regression [0.0]
ガウス過程 (GP) は長い歴史を持つ非パラメトリック回帰エンジンである。
拡張性のあるGPアプローチの1つは、2009年に開発されたKL(Karhunen-Lo'eve)分解カーネルBSS-ANOVAである。
項の数を迅速かつ効果的に制限し、競争力のある精度の方法をもたらす新しい変数選択法である。
論文 参考訳(メタデータ) (2022-05-26T23:41:43Z) - Lassoed Tree Boosting [53.56229983630983]
有界断面変動のカドラー関数の大きな非パラメトリック空間において,早期に停止するn-1/4$ L2の収束速度を持つ勾配向上木アルゴリズムを証明した。
我々の収束証明は、ネストしたドンスカー類の経験的損失最小化子による早期停止に関する新しい一般定理に基づいている。
論文 参考訳(メタデータ) (2022-05-22T00:34:41Z) - A Precise Performance Analysis of Support Vector Regression [105.94855998235232]
我々は,n$の線形測定に応用したハードおよびソフトサポートベクター回帰法について検討した。
得られた結果は、ハードおよびソフトサポートベクトル回帰アルゴリズムの設計に介入するパラメータを最適に調整するために使用される。
論文 参考訳(メタデータ) (2021-05-21T14:26:28Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
マルコフ連鎖からデータポイントが依存しサンプリングされる最小二乗線形回帰問題について検討する。
この問題を$tau_mathsfmix$という観点から、鋭い情報理論のミニマックス下限を確立する。
本稿では,経験的リプレイに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-16T04:26:50Z) - Regression via Implicit Models and Optimal Transport Cost Minimization [5.144809478361603]
条件付きGAN (CGAN) が回帰に適用されている。
現在のCGAN実装では、古典的なジェネレータ-ディスクリミネータアーキテクチャを使用している。
実確率分布$p(y|x)$と推定分布$hatp(y|x)$との間の最適輸送コストを直接最適化する解を提案する。
論文 参考訳(メタデータ) (2020-03-03T02:26:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。