論文の概要: Task-Specific Distance Correlation Matching for Few-Shot Action Recognition
- arxiv url: http://arxiv.org/abs/2512.11340v2
- Date: Mon, 15 Dec 2025 03:29:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 15:10:29.261189
- Title: Task-Specific Distance Correlation Matching for Few-Shot Action Recognition
- Title(参考訳): Few-Shot行動認識のためのタスク特異的距離相関マッチング
- Authors: Fei Long, Yao Zhang, Jiaming Lv, Jiangtao Xie, Peihua Li,
- Abstract要約: 事前訓練されたモデルのセットマッチングと効率的な適応により、アクション認識は顕著な進歩を遂げた。
本稿では,(1)効率的なCLIPファインチューニングのための視覚ラダーサイドネットワーク(LSN),(2)タスク特異的距離相関マッチング(TS-DCM)と呼ばれるメトリクス,(3)適応CLIP(GLAC)モジュールによるLSN誘導の3つのコンポーネントからなるフレームワークTS-FSARを提案する。
- 参考スコア(独自算出の注目度): 20.79271719545984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot action recognition (FSAR) has recently made notable progress through set matching and efficient adaptation of large-scale pre-trained models. However, two key limitations persist. First, existing set matching metrics typically rely on cosine similarity to measure inter-frame linear dependencies and then perform matching with only instance-level information, thus failing to capture more complex patterns such as nonlinear relationships and overlooking task-specific cues. Second, for efficient adaptation of CLIP to FSAR, recent work performing fine-tuning via skip-fusion layers (which we refer to as side layers) has significantly reduced memory cost. However, the newly introduced side layers are often difficult to optimize under limited data conditions. To address these limitations, we propose TS-FSAR, a framework comprising three components: (1) a visual Ladder Side Network (LSN) for efficient CLIP fine-tuning; (2) a metric called Task-Specific Distance Correlation Matching (TS-DCM), which uses $α$-distance correlation to model both linear and nonlinear inter-frame dependencies and leverages a task prototype to enable task-specific matching; and (3) a Guiding LSN with Adapted CLIP (GLAC) module, which regularizes LSN using the adapted frozen CLIP to improve training for better $α$-distance correlation estimation under limited supervision. Extensive experiments on five widely-used benchmarks demonstrate that our TS-FSAR yields superior performance compared to prior state-of-the-arts.
- Abstract(参考訳): Few-shot Action Recognition (FSAR) は、大規模な事前訓練モデルのセットマッチングと効率的な適応を通じて、近年顕著な進歩を遂げている。
しかし、2つの重要な制限が続く。
まず、既存のセットマッチングメトリクスは、通常、フレーム間の線形依存を計測し、インスタンスレベルの情報のみとマッチングするコサイン類似性に依存し、したがって非線型関係やタスク固有の手がかりを見渡すといったより複雑なパターンをキャプチャすることができない。
第二に、CLIPをFSARに効率的に適用するために、スキップ融合層(サイド層と呼ぶ)を介して微調整を行う最近の研究は、メモリコストを大幅に削減した。
しかし、新しく導入されたサイドレイヤは、限られたデータ条件下で最適化することがしばしば困難である。
これらの制約に対処するため, TS-FSARは, 1) 効率的なCLIP微調整のための視覚的なラダーサイドネットワーク(LSN), (2) 線形および非線形のフレーム間の依存関係をモデルとして$α$依存相関を利用してタスク固有マッチングを可能にするTS-DCM, (3) 適応CLIP(GLAC)モジュールによるLSNの誘導, 調整されたCLIPを用いてLSNを正規化して, 限定的な監視下でのより良い$α$距離相関評価のためのトレーニングを改善するTS-DCMという3つのコンポーネントからなるフレームワークを提案する。
広く使われている5つのベンチマークの大規模な実験により、我々のTS-FSARは従来の最先端のベンチマークよりも優れたパフォーマンスが得られることが示された。
関連論文リスト
- OTARo: Once Tuning for All Precisions toward Robust On-Device LLMs [21.55040910903597]
OTARoはデバイス上の大規模言語モデルで量子化精度を柔軟に切り替えることができる新しい手法である。
すべての精度で一貫して強固で堅牢なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-11-17T08:56:27Z) - Hierarchical Self-Supervised Representation Learning for Depression Detection from Speech [51.14752758616364]
音声による抑うつ検出 (SDD) は、従来の臨床評価に代わる有望で非侵襲的な代替手段である。
HAREN-CTCは,マルチタスク学習フレームワーク内でのクロスアテンションを用いて,多層SSL機能を統合した新しいアーキテクチャである。
このモデルはDAIC-WOZで0.81、MODMAで0.82の最先端マクロF1スコアを達成し、両方の評価シナリオで先行手法より優れている。
論文 参考訳(メタデータ) (2025-10-05T09:32:12Z) - INSTINCT: Instance-Level Interaction Architecture for Query-Based Collaborative Perception [6.018757656052237]
協調認識システムは、マルチエージェントの知覚データを統合し、精度と安全性を向上させることで、単一車両の制限を克服する。
これまでの研究は、クエリベースのインスタンスレベルのインタラクションが帯域幅の要求と手作業による事前処理を減らすことを証明してきたが、協調認識におけるLiDARによる実装は未開発のままである。
InSTINCTは,(1)高品質なインスタンス特徴選択のための品質認識型フィルタリング機構,2)協調関連インスタンスと協調関連インスタンスを分離するデュアルブランチ検出ルーティングスキーム,3)クロスエージェントローカルインスタンスフュージョンモジュール,の3つのコアコンポーネントを特徴とする新しい協調認識フレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-28T07:16:32Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Weakly Supervised Co-training with Swapping Assignments for Semantic Segmentation [21.345548821276097]
クラスアクティベーションマップ(CAM)は通常、擬似ラベルを生成するために弱教師付きセマンティックセマンティックセグメンテーション(WSSS)で使用される。
我々は、ガイド付きCAMを組み込んだエンドツーエンドWSSSモデルを提案し、CAMをオンラインで同時最適化しながらセグメンテーションモデルを訓練する。
CoSAは、追加の監督を持つものを含む、既存のマルチステージメソッドをすべて上回る、最初のシングルステージアプローチである。
論文 参考訳(メタデータ) (2024-02-27T21:08:23Z) - Enhancing Few-shot CLIP with Semantic-Aware Fine-Tuning [61.902254546858465]
Contrastive Language-Image Pre-Trainingに基づく手法は、数発の適応タスクで有望な性能を示した。
本稿では,タスク固有のセマンティクスに焦点を合わせるために,トレーニングプロセス中にアテンションプーリング層のパラメータを微調整することを提案する。
論文 参考訳(メタデータ) (2023-11-08T05:18:57Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQは、マルチタスク学習問題とエンティティペアの分布を回避する、シーングラフ生成の新しい定式化である。
我々は,DETRをベースとしたエンコーダ-デコーダ条件付きクエリを用いて,エンティティラベル空間を大幅に削減する。
実験結果から、TraCQは既存のシングルステージシーングラフ生成法よりも優れており、Visual Genomeデータセットの最先端の2段階メソッドを多く上回っていることがわかった。
論文 参考訳(メタデータ) (2023-06-09T06:02:01Z) - Towards Lightweight Cross-domain Sequential Recommendation via External
Attention-enhanced Graph Convolution Network [7.1102362215550725]
クロスドメインシークエンシャルレコメンデーション(CSR)は、複数のドメインからのインタラクションをモデル化することで、重複したユーザの振る舞いパターンの進化を描いている。
上記の課題,すなわちLEA-GCNを解決するために,軽量な外部注意強化GCNベースのフレームワークを導入する。
フレームワークの構造をさらに緩和し、ユーザ固有のシーケンシャルパターンを集約するために、新しい二重チャネル外部注意(EA)コンポーネントを考案する。
論文 参考訳(メタデータ) (2023-02-07T03:06:29Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
本稿では,事前学習したニューラルネットワークを新しいタスクで調整し,性能を大幅に向上させる,Contextual Squeeze-and-Excitation (CaSE) という適応ブロックを提案する。
また、メタトレーニングされたCaSEブロックと微調整ルーチンを利用して効率よく適応する、アッパーCaSEと呼ばれるコーディネートダイスに基づく新しいトレーニングプロトコルを提案する。
論文 参考訳(メタデータ) (2022-06-20T15:25:08Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
本稿では,シーケンス・ツー・シーケンスの区別を文脈的に比較することで学習が,弱い教師付き行動の局所化に不可欠な帰納的バイアスをもたらすことを論じる。
微分可能な動的プログラミングの定式化の下では、FSD(Fen-fine Sequence Distance)とLCS(Longest Common Subsequence)の2つの相補的コントラストが設計されている。
提案手法は,2つのベンチマークにおいて最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-03-31T05:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。