論文の概要: Soft Decision Tree classifier: explainable and extendable PyTorch implementation
- arxiv url: http://arxiv.org/abs/2512.11833v1
- Date: Wed, 03 Dec 2025 09:46:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-21 14:22:08.705365
- Title: Soft Decision Tree classifier: explainable and extendable PyTorch implementation
- Title(参考訳): ソフト決定木分類器:説明可能で拡張可能なPyTorch実装
- Authors: Reuben R Shamir,
- Abstract要約: PyTorch を用いたソフト決定木 (SDT) と短期記憶ソフト決定木 (SM-SDT) を実装した。
これらの手法はシミュレーションおよび臨床データセットで広範囲に試験された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We implemented a Soft Decision Tree (SDT) and a Short-term Memory Soft Decision Tree (SM-SDT) using PyTorch. The methods were extensively tested on simulated and clinical datasets. The SDT was visualized to demonstrate the potential for its explainability. SDT, SM-SDT, and XGBoost demonstrated similar area under the curve (AUC) values. These methods were better than Random Forest, Logistic Regression, and Decision Tree. The results on clinical datasets suggest that, aside from a decision tree, all tested classification methods yield comparable results. The code and datasets are available online on GitHub: https://github.com/KI-Research-Institute/Soft-Decision-Tree
- Abstract(参考訳): 我々はPyTorchを用いてSDT(Soft Decision Tree)とSM-SDT(Short-Term Memory Soft Decision Tree)を実装した。
これらの手法はシミュレーションおよび臨床データセットで広範囲に試験された。
SDTは、その説明可能性の可能性を示すために可視化された。
SDT,SM-SDT,XGBoostは曲線(AUC)値で類似した領域を示した。
これらの方法はランダムフォレスト、ロジスティック回帰、決定木よりも優れていた。
臨床データセットの結果は、決定木を除いて、全ての試験された分類方法が同等の結果をもたらすことを示唆している。
コードとデータセットはGitHubで公開されている。 https://github.com/KI-Research-Institute/Soft-Decision-Tree
関連論文リスト
- Hierarchical Quantized Diffusion Based Tree Generation Method for Hierarchical Representation and Lineage Analysis [49.00783841494125]
HDTreeは階層的潜在空間内の木関係を、統一的な階層的コードブックと量子化拡散プロセスを用いてキャプチャする。
HDTreeの有効性は、汎用データセットと単一セルデータセットの比較によって示される。
これらの貢献は階層的な系統解析のための新しいツールを提供し、より正確で効率的な細胞分化経路のモデリングを可能にする。
論文 参考訳(メタデータ) (2025-06-29T15:19:13Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
本稿では,大規模言語モデル(LLM)を用いて,効率的な特徴生成ルールを同定するフレームワークを提案する。
我々は、自然言語で容易に表現できるため、この推論情報を伝達するために決定木を使用します。
OCTreeは様々なベンチマークで様々な予測モデルの性能を継続的に向上させる。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Online Learning of Decision Trees with Thompson Sampling [12.403737756721467]
決定木は解釈可能な機械学習のための顕著な予測モデルである。
オンライン環境で最適な決定木を生成できるモンテカルロ木探索アルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-04-09T15:53:02Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - GradTree: Learning Axis-Aligned Decision Trees with Gradient Descent [10.27211960475599]
決定木(DT)は多くの機械学習タスクで一般的に使われている。
本稿では,greedyアルゴリズムを用いた新しいDT学習手法を提案する。
直進演算子と直進演算子を高密度DT表現とし,すべての木パラメータを協調的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2023-05-05T13:24:35Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
本研究では,高次元scRNA-seqデータから意味のある木構造を同定する手法を提案する。
次に、低次元空間におけるデータのツリー構造を強調する木バイアスオートエンコーダDTAEを紹介する。
論文 参考訳(メタデータ) (2021-02-11T08:48:48Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation [75.93960390191262]
我々は、オブジェクトカテゴリ間の関係に関する事前知識を利用して、きめ細かいクラスを粗い親クラスにクラスタリングする。
そこで本研究では,NMS再サンプリング法を提案する。
提案手法はフォレストR-CNNと呼ばれ,ほとんどのオブジェクト認識モデルに適用可能なプラグイン・アンド・プレイモジュールとして機能する。
論文 参考訳(メタデータ) (2020-08-13T03:52:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。