論文の概要: VoroLight: Learning Quality Volumetric Voronoi Meshes from General Inputs
- arxiv url: http://arxiv.org/abs/2512.12984v1
- Date: Mon, 15 Dec 2025 05:01:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.540244
- Title: VoroLight: Learning Quality Volumetric Voronoi Meshes from General Inputs
- Title(参考訳): VoroLight: 一般的な入力から品質ボリュームのVoronoiメッシュを学習する
- Authors: Jiayin Lu, Ying Jiang, Yin Yang, Chenfanfu Jiang,
- Abstract要約: VoroLightは、Voronoiメッシュに基づく3次元形状再構成のための差別化可能なフレームワークである。
我々のアプローチは滑らかで水密な表面と位相的に一貫した体積メッシュを生成する。
- 参考スコア(独自算出の注目度): 24.299819830510828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present VoroLight, a differentiable framework for 3D shape reconstruction based on Voronoi meshing. Our approach generates smooth, watertight surfaces and topologically consistent volumetric meshes directly from diverse inputs, including images, implicit shape level-set fields, point clouds and meshes. VoroLight operates in three stages: it first initializes a surface using a differentiable Voronoi formulation, then refines surface quality through a polygon-face sphere training stage, and finally reuses the differentiable Voronoi formulation for volumetric optimization with additional interior generator points. Project page: https://jiayinlu19960224.github.io/vorolight/
- Abstract(参考訳): 本稿では,Vorooiメッシュを用いた3次元形状復元のための微分可能なフレームワークであるVoroLightを提案する。
提案手法は, 画像, 暗黙の形状レベル設定フィールド, 点雲, メッシュなどの様々な入力から, 滑らかで水密な表面と位相的に整合な体積メッシュを直接生成する。
VoroLightは、まず微分可能なボロノイの定式化を用いて表面を初期化し、次にポリゴン面球面の訓練段階を通して表面品質を洗練し、最終的に体積最適化のための微分可能なボロノイの定式化を内部ジェネレータポイントで再利用する。
プロジェクトページ:https://jiayinlu 19960224.github.io/vorolight/
関連論文リスト
- MILo: Mesh-In-the-Loop Gaussian Splatting for Detailed and Efficient Surface Reconstruction [38.02000636240954]
3次元ガウスからメッシュを微分的に抽出することにより,体積表現と表面表現のギャップを埋める新しいフレームワークMILoを提案する。
提案手法では,従来の手法に比べてメッシュ頂点のオーダーを桁違いに少なくしつつ,背景を含む全シーンを最先端の品質で再構築することができる。
論文 参考訳(メタデータ) (2025-06-30T17:48:54Z) - MASH: Masked Anchored SpHerical Distances for 3D Shape Representation and Generation [55.88474970190769]
Masked Anchored SpHerical Distances (MASH)は、3次元形状のマルチビューでパラメタライズドな表現である。
MASHは、表面再構成、形状生成、完成、ブレンディングなど、複数の用途に汎用性がある。
論文 参考訳(メタデータ) (2025-04-12T09:28:12Z) - Thin-Shell-SfT: Fine-Grained Monocular Non-rigid 3D Surface Tracking with Neural Deformation Fields [66.1612475655465]
RGBビデオから変形可能な表面を3Dで再現することは難しい問題だ。
既存の方法は、統計的、神経的、物理的に先行する変形モデルを使用する。
我々は,非剛性3次元トラッキングメッシュの新しい手法であるThinShell-SfTを提案する。
論文 参考訳(メタデータ) (2025-03-25T18:00:46Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
本稿では,高精細な幾何学と高品質なテクスチャの創出に優れたテキスト・ツー・3D生成モデルであるDreamPolishを紹介する。
幾何構成フェーズでは, 合成過程の安定性を高めるために, 複数のニューラル表現を利用する。
テクスチャ生成フェーズでは、そのような領域に向けて神経表現を導くために、新しいスコア蒸留、すなわちドメインスコア蒸留(DSD)を導入する。
論文 参考訳(メタデータ) (2024-11-03T15:15:01Z) - Triplet: Triangle Patchlet for Mesh-Based Inverse Rendering and Scene Parameters Approximation [0.0]
逆レンダリングは、光、幾何学、テクスチャ、材料を含むシーンの物理的特性を導き出そうとする。
メッシュは、多くのシミュレーションパイプラインで採用されている伝統的な表現として、いまだに逆レンダリングのラディアンスフィールドに限られた影響しか示していない。
本稿では,これらのパラメータを包括的に近似するメッシュベースの表現であるTriangle Patchlet (abbr. Triplet) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T09:59:11Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
3次元形状の深い生成モデルは、しばしば潜在的な変動を探索するために使用できる連続的な潜伏空間を特徴付ける。
本研究では,手軽に探索可能な2次元探索空間から事前学習された生成モデルのサブ空間へのマッピングを構築することで,与えられたランドマーク形状の集合間のバリエーションを探索する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:53:57Z) - DiViNeT: 3D Reconstruction from Disparate Views via Neural Template
Regularization [7.488962492863031]
本稿では3つの異なるRGB画像を入力として用いたボリュームレンダリングに基づくニューラルサーフェス再構成手法を提案する。
我々のキーとなる考え方は再建を規則化することであり、これは深刻な問題であり、スパースビューの間に大きなギャップを埋めることである。
提案手法は, 従来の手法の中でも, 疎外な視点で, 最高の復元品質を達成できる。
論文 参考訳(メタデータ) (2023-06-07T18:05:14Z) - Pointersect: Neural Rendering with Cloud-Ray Intersection [30.485621062087585]
本研究では,点雲を表面のように描画する新しい手法を提案する。
提案手法は識別可能であり,シーン固有の最適化を必要としない。
論文 参考訳(メタデータ) (2023-04-24T18:36:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。