論文の概要: CORE: Contrastive Masked Feature Reconstruction on Graphs
- arxiv url: http://arxiv.org/abs/2512.13235v1
- Date: Mon, 15 Dec 2025 11:48:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.643955
- Title: CORE: Contrastive Masked Feature Reconstruction on Graphs
- Title(参考訳): CORE: グラフ上の対照的なマスク付き特徴再構成
- Authors: Jianyuan Bo, Yuan Fang,
- Abstract要約: 生成的およびコントラスト的方法論は、グラフ上の自己教師付き学習の2つの主要なアプローチとして現れている。
コントラスト学習をMFRに統合したグラフ自己教師型学習フレームワークであるContrastive Masked Feature Reconstruction (CORE)を提案する。
COREはノードやグラフの分類タスクでMFRを大幅に上回り、最先端の結果を示す。
- 参考スコア(独自算出の注目度): 11.186718960864063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving field of self-supervised learning on graphs, generative and contrastive methodologies have emerged as two dominant approaches. Our study focuses on masked feature reconstruction (MFR), a generative technique where a model learns to restore the raw features of masked nodes in a self-supervised manner. We observe that both MFR and graph contrastive learning (GCL) aim to maximize agreement between similar elements. Building on this observation, we reveal a novel theoretical insight: under specific conditions, the objectives of MFR and node-level GCL converge, despite their distinct operational mechanisms. This theoretical connection suggests these approaches are complementary rather than fundamentally different, prompting us to explore their integration to enhance self-supervised learning on graphs. Our research presents Contrastive Masked Feature Reconstruction (CORE), a novel graph self-supervised learning framework that integrates contrastive learning into MFR. Specifically, we form positive pairs exclusively between the original and reconstructed features of masked nodes, encouraging the encoder to prioritize contextual information over the node's own features. Additionally, we leverage the masked nodes themselves as negative samples, combining MFR's reconstructive power with GCL's discriminative ability to better capture intrinsic graph structures. Empirically, our proposed framework CORE significantly outperforms MFR across node and graph classification tasks, demonstrating state-of-the-art results. In particular, CORE surpasses GraphMAE and GraphMAE2 by up to 2.80% and 3.72% on node classification tasks, and by up to 3.82% and 3.76% on graph classification tasks.
- Abstract(参考訳): グラフ上の自己教師学習の急速に発展する分野では、生成的および対照的な方法論が2つの支配的なアプローチとして現れている。
本研究は,マスクノードの生特徴を自己管理的に復元する手法であるマスク特徴再構成(MFR)に焦点を当てた。
MFRとグラフコントラスト学習(GCL)の両方が、類似した要素間の一致を最大化することを目的としている。
特定の条件下では、MFRとノードレベルのGCLの目的は、それぞれ異なる操作機構にもかかわらず収束する。
この理論的な関係は、これらのアプローチが根本的に異なるのではなく相補的なものであることを示唆し、グラフ上の自己教師付き学習を強化するためにそれらの統合を探求するように促す。
コントラスト学習をMFRに統合したグラフ自己教師型学習フレームワークであるContrastive Masked Feature Reconstruction (CORE)を提案する。
具体的には、マスクされたノードの本来の特徴と再構成された特徴にのみ正のペアを形成し、エンコーダがノード自身の特徴よりもコンテキスト情報を優先するように促す。
さらに、マスクされたノード自体を負のサンプルとして利用し、MFRの再構成力とGCLの識別能力を組み合わせて、固有グラフ構造をよりよく捉える。
提案するフレームワークCOREは,ノード分類タスクやグラフ分類タスクでMFRを著しく上回り,最先端の結果を示す。
特に、ノード分類タスクは最大2.80%、ノード分類タスクは最大3.72%、グラフ分類タスクは最大3.82%、グラフ分類タスクは最大3.76%である。
関連論文リスト
- Learning Robust Heterogeneous Graph Representations via Contrastive-Reconstruction under Sparse Semantics [13.555683316315683]
マスケードオートエンコーダ(MAE)とコントラスト学習(CL)はグラフ自己教師学習において2つの重要なパラダイムである。
本稿ではヘテロジニアスグラフのための新しい二チャンネル自己教師型学習フレームワークHetCRFを紹介する。
HetCRFは2段階のアグリゲーション戦略を用いて埋め込みセマンティクスを適応し、MAEとCLの両方と互換性がある。
論文 参考訳(メタデータ) (2025-06-07T06:35:42Z) - GMLM: Bridging Graph Neural Networks and Language Models for Heterophilic Node Classification [0.0]
本稿では,事前学習したテキストエンコーダとグラフ畳み込みネットワーク(R-GCN)を効果的に融合するフレームワークを提案する。
5つのヘテロ親和性ベンチマークの実験により、我々の積分法は最先端の結果が得られることを示した。
これらの結果は,テキストリッチグラフ表現学習における融合戦略の有効性を浮き彫りにした。
論文 参考訳(メタデータ) (2025-02-24T07:44:01Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
グラフマスク付きオートエンコーダのための統一フレームワークであるUGMAEを提案する。
まず,ノードの特異性を考慮した適応型特徴マスク生成器を開発した。
次に,階層型構造再構成と特徴再構成を併用し,総合的なグラフ情報を取得する。
論文 参考訳(メタデータ) (2024-02-12T19:39:26Z) - Rethinking Graph Masked Autoencoders through Alignment and Uniformity [26.86368034133612]
グラフ上の自己教師付き学習は、対照的で生成的な方法に分岐することができる。
グラフマスク付きオートエンコーダ(GraphMAE)の最近の出現は、生成法の背後にあるモーメントを回復させる。
論文 参考訳(メタデータ) (2024-02-11T15:21:08Z) - Generative and Contrastive Paradigms Are Complementary for Graph
Self-Supervised Learning [56.45977379288308]
Masked Autoencoder (MAE)は、マスク付きグラフエッジやノード機能の再構築を学ぶ。
Contrastive Learning (CL)は、同じグラフの拡張ビュー間の類似性を最大化する。
我々は,MAE と CL を統一するグラフコントラッシブマスク付きオートエンコーダ (GCMAE) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T05:06:06Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked Graph Autoencoder (MGAE) フレームワークは、グラフ構造データの効果的な学習を行う。
自己指導型学習から洞察を得て、私たちはランダムに大量のエッジを隠蔽し、トレーニング中に欠落したエッジを再構築しようとします。
論文 参考訳(メタデータ) (2022-01-07T16:48:07Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。