論文の概要: Memory in the Age of AI Agents
- arxiv url: http://arxiv.org/abs/2512.13564v1
- Date: Mon, 15 Dec 2025 17:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.77752
- Title: Memory in the Age of AI Agents
- Title(参考訳): AIエージェント時代の記憶
- Authors: Yuyang Hu, Shichun Liu, Yanwei Yue, Guibin Zhang, Boyang Liu, Fangyi Zhu, Jiahang Lin, Honglin Guo, Shihan Dou, Zhiheng Xi, Senjie Jin, Jiejun Tan, Yanbin Yin, Jiongnan Liu, Zeyu Zhang, Zhongxiang Sun, Yutao Zhu, Hao Sun, Boci Peng, Zhenrong Cheng, Xuanbo Fan, Jiaxin Guo, Xinlei Yu, Zhenhong Zhou, Zewen Hu, Jiahao Huo, Junhao Wang, Yuwei Niu, Yu Wang, Zhenfei Yin, Xiaobin Hu, Yue Liao, Qiankun Li, Kun Wang, Wangchunshu Zhou, Yixin Liu, Dawei Cheng, Qi Zhang, Tao Gui, Shirui Pan, Yan Zhang, Philip Torr, Zhicheng Dou, Ji-Rong Wen, Xuanjing Huang, Yu-Gang Jiang, Shuicheng Yan,
- Abstract要約: この研究は、現在のエージェントメモリ研究の最新の展望を提供することを目的としている。
我々は,エージェントメモリ,すなわちトークンレベル,パラメトリック,潜時メモリの3つの支配的実現を同定する。
実用的な開発を支援するため、メモリベンチマークとオープンソースフレームワークの包括的な概要をコンパイルする。
- 参考スコア(独自算出の注目度): 217.9368190980982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
- Abstract(参考訳): メモリは登場し続けており、ファンデーションモデルベースのエージェントの中核的な能力である。
エージェントメモリの研究が急速に拡大し、前例のない注目を惹きつけるにつれ、この分野も分断されつつある。
エージェントメモリの傘下にある既存の研究は、しばしばそのモチベーション、実装、評価プロトコルにおいて大きく異なるが、緩やかに定義されたメモリ用語の拡散は概念的明瞭さをさらに曖昧にしている。
長期記憶のような伝統的な分類体系は、現代のエージェント記憶システムの多様性を捉えるには不十分であることが証明されている。
この研究は、現在のエージェントメモリ研究の最新の展望を提供することを目的としている。
まず、エージェントメモリの範囲を明確に定義し、LLMメモリ、検索拡張生成(RAG)、コンテキストエンジニアリングといった関連する概念と区別することから始める。
次に、フォーム、関数、ダイナミックスの統一レンズを通してエージェントメモリを調べる。
形態の観点からは,エージェントメモリ,すなわちトークンレベル,パラメトリック,潜時メモリの3つの支配的実現を識別する。
機能の観点からは,事実,経験,作業記憶を識別する,よりきめ細かい分類法を提案する。
ダイナミクスの観点から、時間とともにメモリがどのように生成、進化し、取得されるかを分析する。
実用的な開発を支援するため、メモリベンチマークとオープンソースフレームワークの包括的な概要をコンパイルする。
統合の他に、メモリ自動化、強化学習の統合、マルチモーダルメモリ、マルチエージェントメモリ、信頼性問題など、新たな研究フロンティアの展望を明確に述べる。
この調査は、既存の研究の参考としてだけでなく、未来のエージェントインテリジェンスの設計における第一級プリミティブとして記憶を再考するための概念的基盤としても機能することを願っている。
関連論文リスト
- Evaluating Long-Term Memory for Long-Context Question Answering [100.1267054069757]
質問応答タスクにアノテートした合成長文対話のベンチマークであるLoCoMoを用いて,メモリ拡張手法の体系的評価を行う。
以上の結果から,メモリ拡張アプローチによりトークン使用率が90%以上削減され,競争精度が向上した。
論文 参考訳(メタデータ) (2025-10-27T18:03:50Z) - MemGen: Weaving Generative Latent Memory for Self-Evolving Agents [57.1835920227202]
本稿では,エージェントに人間的な認知機能を持たせる動的生成記憶フレームワークであるMemGenを提案する。
MemGenは、エージェントが推論を通して潜在記憶をリコールし、増大させ、記憶と認知の密接なサイクルを生み出すことを可能にする。
論文 参考訳(メタデータ) (2025-09-29T12:33:13Z) - Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions [55.19217798774033]
メモリは、大規模言語モデル(LLM)ベースのエージェントを支える、AIシステムの基本コンポーネントである。
本稿ではまず,メモリ表現をパラメトリックおよびコンテキスト形式に分類する。
次に、コンソリデーション、更新、インデックス付け、フォッティング、検索、圧縮の6つの基本的なメモリ操作を紹介します。
論文 参考訳(メタデータ) (2025-05-01T17:31:33Z) - From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs [34.361000444808454]
メモリは情報をエンコードし、保存し、検索するプロセスである。
大規模言語モデル(LLM)の時代において、メモリとは、AIシステムが過去のインタラクションからの情報を保持し、リコールし、使用し、将来の応答とインタラクションを改善する能力である。
論文 参考訳(メタデータ) (2025-04-22T15:05:04Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
大規模言語モデル(LLM)に基づくエージェントは、最近、研究や産業コミュニティから多くの注目を集めている。
LLMベースのエージェントは、現実の問題を解決する基礎となる自己進化能力に特徴付けられる。
エージェント-環境相互作用をサポートする重要なコンポーネントは、エージェントのメモリである。
論文 参考訳(メタデータ) (2024-04-21T01:49:46Z) - A Machine with Short-Term, Episodic, and Semantic Memory Systems [9.42475956340287]
明示的な人間の記憶システムの認知科学理論に触発されて、我々は短期的、エピソード的、セマンティックな記憶システムを持つエージェントをモデル化した。
実験により,人間のような記憶システムを持つエージェントは,このメモリ構造を環境に残さずにエージェントよりも優れた性能を発揮できることが示唆された。
論文 参考訳(メタデータ) (2022-12-05T08:34:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。