論文の概要: Generative Human-Object Interaction Detection via Differentiable Cognitive Steering of Multi-modal LLMs
- arxiv url: http://arxiv.org/abs/2512.17640v1
- Date: Fri, 19 Dec 2025 14:41:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-22 19:25:54.439435
- Title: Generative Human-Object Interaction Detection via Differentiable Cognitive Steering of Multi-modal LLMs
- Title(参考訳): 多モードLLMの識別ステアリングによる人・物間相互作用の検出
- Authors: Zhaolin Cai, Huiyu Duan, Zitong Xu, Fan Li, Zhi Liu, Jing Liu, Wei Shen, Xiongkuo Min, Guangtao Zhai,
- Abstract要約: 人間と物体の相互作用(Human-object Interaction、HOI)の検出は、人と物体のペアとそれらの相互作用を局在させることを目的としている。
既存のメソッドはクローズドワールドの仮定の下で動作し、タスクを未定義の小さな動詞集合上の分類問題として扱う。
本稿では,閉集合分類タスクから開語彙生成問題へのHOI検出を再構成する新しい生成推論・ステアブル知覚フレームワークGRASP-HOを提案する。
- 参考スコア(独自算出の注目度): 85.69785384599827
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human-object interaction (HOI) detection aims to localize human-object pairs and the interactions between them. Existing methods operate under a closed-world assumption, treating the task as a classification problem over a small, predefined verb set, which struggles to generalize to the long-tail of unseen or ambiguous interactions in the wild. While recent multi-modal large language models (MLLMs) possess the rich world knowledge required for open-vocabulary understanding, they remain decoupled from existing HOI detectors since fine-tuning them is computationally prohibitive. To address these constraints, we propose \GRASP-HO}, a novel Generative Reasoning And Steerable Perception framework that reformulates HOI detection from the closed-set classification task to the open-vocabulary generation problem. To bridge the vision and cognitive, we first extract hybrid interaction representations, then design a lightweight learnable cognitive steering conduit (CSC) module to inject the fine-grained visual evidence into a frozen MLLM for effective reasoning. To address the supervision mismatch between classification-based HOI datasets and open-vocabulary generative models, we introduce a hybrid guidance strategy that coupling the language modeling loss and auxiliary classification loss, enabling discriminative grounding without sacrificing generative flexibility. Experiments demonstrate state-of-the-art closed-set performance and strong zero-shot generalization, achieving a unified paradigm that seamlessly bridges discriminative perception and generative reasoning for open-world HOI detection.
- Abstract(参考訳): 人-物間相互作用(Human-object Interaction,HOI)は、人-物対とそれらの間の相互作用を局在化することを目的としている。
既存のメソッドはクローズドワールドの仮定の下で動作し、タスクを未定義の小さな動詞集合上の分類問題として扱う。
最近のマルチモーダル大言語モデル(MLLM)は、オープン語彙理解に必要な豊富な世界知識を持っているが、微調整は計算的に禁止されているため、既存のHOI検出器とは切り離されている。
これらの制約に対処するために,閉集合分類タスクから開語彙生成問題へのHOI検出を再構成する新しい生成推論とステアブル知覚フレームワークである \GRASP-HO} を提案する。
視覚と認知を橋渡しするために,我々はまずハイブリッドな相互作用表現を抽出し,その上で学習可能な軽量な認知ステアリング・コンジット(CSC)モジュールを設計し,その微細な視覚的証拠を凍結MLLMに注入して効果的な推論を行う。
分類に基づくHOIデータセットとオープン語彙生成モデルとの監督ミスマッチに対処するために、言語モデリング損失と補助分類損失を結合し、生成柔軟性を犠牲にすることなく識別的接地を可能にするハイブリッドガイダンス戦略を導入する。
実験は、最先端のクローズドセット性能と強力なゼロショット一般化を示し、オープンワールドHOI検出のための識別的認識と生成的推論をシームレスに橋渡しする統一パラダイムを実現する。
関連論文リスト
- HOID-R1: Reinforcement Learning for Open-World Human-Object Interaction Detection Reasoning with Multimodal Large Language Model [13.82578761807402]
HOID-R1は,チェーン・オブ・シント(CoT)とグループ相対的ポリシー最適化のファインチューニングを統合した最初のHOI検出フレームワークである。
CoT推論における幻覚を軽減するために,CoT出力を監督するMLLM-as-a-judge機構を導入する。
実験により、HOID-R1はHOI検出ベンチマークの最先端性能を達成し、新しいシナリオへのオープンワールドの一般化における既存の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-08-15T09:28:57Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Exploring the Potential of Large Foundation Models for Open-Vocabulary HOI Detection [9.788417605537965]
条件付き多レベルデコードと細粒度セマンティックエンハンスメントを備えた新しいエンドツーエンドオープン語彙HOI検出フレームワークを提案する。
提案手法は,開語彙HOI検出の最先端化を実現する。
論文 参考訳(メタデータ) (2024-04-09T10:27:22Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Active Open-Vocabulary Recognition: Let Intelligent Moving Mitigate CLIP
Limitations [9.444540281544715]
オープン語彙認識のための新しいエージェントを提案する。
提案手法は,クラス固有の知識に頼ることなく,フレーム間の類似性や概念間の類似性を利用してエージェントの動きをナビゲートし,特徴を融合する。
論文 参考訳(メタデータ) (2023-11-28T19:24:07Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
本研究では,ビジョン・ランゲージ(VL)基礎モデルと大規模言語モデル(LLM)を用いて,オープンワールド環境におけるユニバーサルインタラクション認識について検討する。
我々の設計にはHO Prompt-guided Decoder (HOPD) が含まれており、基礎モデルにおける高次関係表現と画像内の様々なHOペアとの結合を容易にする。
オープンカテゴリの対話認識では,対話文と解釈文の2つのタイプがサポートされている。
論文 参考訳(メタデータ) (2023-11-07T08:27:32Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。