論文の概要: DACE For Railway Acronym Disambiguation
- arxiv url: http://arxiv.org/abs/2512.18357v1
- Date: Sat, 20 Dec 2025 12:56:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.302372
- Title: DACE For Railway Acronym Disambiguation
- Title(参考訳): DACE for Railway Acronym Disambiguation
- Authors: El Mokhtar Hribach, Oussama Mechhour, Mohammed Elmonstaser, Yassine El Boudouri, Othmane Kabal,
- Abstract要約: Acronym Disambiguation (AD)は、技術的テキスト処理における基本的な課題である。
本論文は、フランスの鉄道文書に関するTextMine'26コンペティションの文脈内でADに対処する。
DACEは、適応型インコンテキスト学習と外部ドメイン知識注入により、大規模言語モデルを強化するフレームワークである。
- 参考スコア(独自算出の注目度): 0.13048920509133807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acronym Disambiguation (AD) is a fundamental challenge in technical text processing, particularly in specialized sectors where high ambiguity complicates automated analysis. This paper addresses AD within the context of the TextMine'26 competition on French railway documentation. We present DACE (Dynamic Prompting, Retrieval Augmented Generation, Contextual Selection, and Ensemble Aggregation), a framework that enhances Large Language Models through adaptive in-context learning and external domain knowledge injection. By dynamically tailoring prompts to acronym ambiguity and aggregating ensemble predictions, DACE mitigates hallucination and effectively handles low-resource scenarios. Our approach secured the top rank in the competition with an F1 score of 0.9069.
- Abstract(参考訳): Acronym Disambiguation(AD)は、特に高い曖昧さが自動分析を複雑にする専門分野において、技術的テキスト処理において基本的な課題である。
本論文は、フランスの鉄道文書に関するTextMine'26コンペティションの文脈内でADに対処する。
DACE(Dynamic Prompting, Retrieval Augmented Generation, Contextual Selection, and Ensemble Aggregation)は,適応型インコンテキスト学習と外部ドメイン知識注入によって大規模言語モデルを強化するフレームワークである。
DACEは動的にアンサンブル予測を発音するプロンプトを調整し、アンサンブル予測を集約することで幻覚を緩和し、低リソースシナリオを効果的に処理する。
我々のアプローチはF1スコア0.9069の競争でトップランクを確保した。
関連論文リスト
- SPARTA: Evaluating Reasoning Segmentation Robustness through Black-Box Adversarial Paraphrasing in Text Autoencoder Latent Space [11.534994345027362]
MLLM(Multimodal large language model)は、推論セグメンテーションなどの視覚言語タスクにおいて顕著な機能を示す。
そこで本研究では,従来の問合せの意味を保ちつつ,セグメンテーション性能を劣化させつつ,文法的に正しい言い回しを生成する,新しい逆の言い回しタスクを提案する。
テキストオートエンコーダの低次元意味潜在空間で動作するブラックボックスであるSPARTAを導入する。
論文 参考訳(メタデータ) (2025-10-28T14:09:05Z) - Constrained Prompt Enhancement for Improving Zero-Shot Generalization of Vision-Language Models [57.357091028792325]
ウェブスケールのデータに基づいて事前訓練された視覚言語モデル(VLM)は、ゼロショットの一般化を約束するが、しばしば意味的ミスアライメントに悩まされる。
視覚・テクストアライメントを改善するために,制約付きプロンプトエンハンスメント(CPE)法を提案する。
提案手法はTGSSG(Topology-Guided Synonymous Semantic Generation)とCADRS(Calegory-Agnostic Discriminative Region Selection)の2つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2025-08-24T15:45:22Z) - DistinctAD: Distinctive Audio Description Generation in Contexts [62.58375366359421]
本研究では,より優れた物語を生成するために,特徴性を重視した音声記述を生成するためのフレームワークであるDistinctADを提案する。
ドメインギャップに対処するために、追加のADコーパスを必要としないCLIP-AD適応戦略を導入する。
ステージIIでは、DistinctADは2つの重要なイノベーションを取り入れている: (i) コンテクスト予測最大化注意(EMA)モジュールは、連続するビデオクリップから共通のベースを抽出することで冗長性を低減し、 (ii) コンテキスト内の繰り返し単語をフィルタリングする明確な単語予測損失である。
論文 参考訳(メタデータ) (2024-11-27T09:54:59Z) - Automating Intervention Discovery from Scientific Literature: A Progressive Ontology Prompting and Dual-LLM Framework [56.858564736806414]
本稿では,大規模言語モデル(LLM)を利用した科学文献の介入の同定手法を提案する。
言語病理領域における64,177論文のコーパスから,2,421件の介入が得られた。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
文パターン構造解析(SPS)は、主に言語教育に使用される構文解析法である。
既存のSPSは教科書のコーパスに大きく依存しており、クロスドメイン機能に欠ける。
本稿では,大規模言語モデル(LLM)を自己学習フレームワーク内で活用する革新的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T05:30:48Z) - Seed Words Based Data Selection for Language Model Adaptation [11.59717828860318]
本稿では,テキストコーパスから文を自動的に選択する手法を提案する。
ベースラインモデルの語彙は拡張・調整され、OOVレートが低下する。
異なる測定値(OOVレート, WER, 精度, リコール)を用いて, 提案手法の有効性を示す。
論文 参考訳(メタデータ) (2021-07-20T12:08:27Z) - BERT-based Acronym Disambiguation with Multiple Training Strategies [8.82012912690778]
Acronym disambiguation (AD) タスクは、与えられた文中の曖昧な頭字語を正しく拡張することを目的としている。
BERTと動的負のサンプル選択を含むいくつかのトレーニング戦略を組み込んだバイナリ分類モデルを提案する。
SciAD実験は,提案手法の有効性を示し,SDU@AAAI-21共有課題2:Acronym Disambiguationのスコアが1位となった。
論文 参考訳(メタデータ) (2021-02-25T05:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。