論文の概要: Enhancing 3D Semantic Scene Completion with a Refinement Module
- arxiv url: http://arxiv.org/abs/2512.18363v1
- Date: Sat, 20 Dec 2025 13:30:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.305782
- Title: Enhancing 3D Semantic Scene Completion with a Refinement Module
- Title(参考訳): リファインメントモジュールによる3次元セマンティックシーン補完の強化
- Authors: Dunxing Zhang, Jiachen Lu, Han Yang, Lei Bao, Bo Song,
- Abstract要約: ESSC-RMはセマンティック・シーン・コンプリートのためのプラグイン・アンド・プレイ・エンハンシング・フレームワークである。
ESSC-RMはセマンティック予測性能を一貫して改善することを示す。
これらの結果から,ESSC-RMは多種多様なSSCモデルに適用可能な汎用化フレームワークとして機能することが示唆された。
- 参考スコア(独自算出の注目度): 14.315446076114462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose ESSC-RM, a plug-and-play Enhancing framework for Semantic Scene Completion with a Refinement Module, which can be seamlessly integrated into existing SSC models. ESSC-RM operates in two phases: a baseline SSC network first produces a coarse voxel prediction, which is subsequently refined by a 3D U-Net-based Prediction Noise-Aware Module (PNAM) and Voxel-level Local Geometry Module (VLGM) under multiscale supervision. Experiments on SemanticKITTI show that ESSC-RM consistently improves semantic prediction performance. When integrated into CGFormer and MonoScene, the mean IoU increases from 16.87% to 17.27% and from 11.08% to 11.51%, respectively. These results demonstrate that ESSC-RM serves as a general refinement framework applicable to a wide range of SSC models.
- Abstract(参考訳): 本稿では,既存のSSCモデルにシームレスに統合可能なセマンティック・シーン・コンプリートのためのプラグイン・アンド・プレイ・エンハンシング・フレームワークであるESSC-RMを提案する。
SSCネットワークはまず粗いボクセル予測を生成し、その後3D U-Netベースの予測ノイズ認識モジュール(PNAM)とVoxelレベルの局所幾何モジュール(VLGM)によって改善される。
SemanticKITTIの実験では、ESSC-RMはセマンティック予測性能を一貫して改善している。
CGFormerとMonoSceneに統合されると、平均IoUは16.87%から17.27%、IoUは11.08%から11.51%に増加する。
これらの結果から,ESSC-RMは多種多様なSSCモデルに適用可能な汎用化フレームワークとして機能することが示唆された。
関連論文リスト
- SPHERE: Semantic-PHysical Engaged REpresentation for 3D Semantic Scene Completion [52.959716866316604]
カメラベース3Dセマンティックシーンコンプリート(SSC)は自動運転システムにおいて重要な課題である。
本稿では,SPHERE (Semantic-PHysical Engaged Representation) を提案する。
SPHEREは、意味情報と物理的情報の共同利用のためのボクセルとガウス表現を統合している。
論文 参考訳(メタデータ) (2025-09-14T09:07:41Z) - Multi-Scale Spectral Attention Module-based Hyperspectral Segmentation in Autonomous Driving Scenarios [3.437245452211197]
本稿では,スペクトル特徴抽出を強化したマルチスケール分光アテンションモジュール(MSAM)を提案する。
MSAMをUNetのスキップ接続(UNet-SC)に統合することにより,提案したUNet-MSAMはセマンティックセグメンテーション性能を大幅に改善する。
論文 参考訳(メタデータ) (2025-06-23T14:24:20Z) - MetaSSC: Enhancing 3D Semantic Scene Completion for Autonomous Driving through Meta-Learning and Long-sequence Modeling [3.139165705827712]
セマンティックシーン補完(SSC)のためのメタラーニングに基づく新しいフレームワークであるMetaSSCを紹介する。
我々のアプローチは、不完全領域のセマンティックスと幾何学を探求することを目的とした、ボクセルに基づくセマンティックセマンティックセマンティクス(SS)事前訓練タスクから始まる。
シミュレーションされた協調認識データセットを用いて、集約されたセンサデータを用いて1台の車両の知覚訓練を監督する。
このメタ知識は、二重フェーズのトレーニング戦略を通じてターゲットドメインに適応し、効率的なデプロイメントを可能にする。
論文 参考訳(メタデータ) (2024-11-06T05:11:25Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
外科手術のシーングラフ生成(SGG)は、手術室(OR)におけるホモロジー認知知能の増強に不可欠である
これまでの研究は主に多段階学習に依存しており、生成したセマンティックシーングラフはポーズ推定とオブジェクト検出を伴う中間プロセスに依存している。
本研究では,S2Former-OR(S2Former-OR)と呼ばれるORにおけるSGGのための新しいシングルステージバイモーダルトランスフォーマフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T11:40:49Z) - SSC-RS: Elevate LiDAR Semantic Scene Completion with Representation
Separation and BEV Fusion [17.459062337718677]
本稿では,表現分離とBEV融合の観点から,屋外SSCを解くことを提案する。
本稿では,SSC-RSと命名されたネットワークについて述べる。このネットワークは,意味的および幾何学的表現の学習手順を明示的に切り離すために,深い監督を伴う分岐を用いている。
提案したAdaptive Representation Fusion (ARF) モジュールを備えたBEV融合ネットワークを用いて, マルチスケール特徴を効果的かつ効率的に集約する。
論文 参考訳(メタデータ) (2023-06-27T10:02:45Z) - SSCBench: A Large-Scale 3D Semantic Scene Completion Benchmark for Autonomous Driving [87.8761593366609]
SSCBenchは、広く使用されている自動車データセットのシーンを統合するベンチマークである。
我々は、単眼、三眼、クラウド入力を用いて、性能ギャップを評価するモデルをベンチマークする。
クロスドメインの一般化テストを簡単にするために、さまざまなデータセットにまたがったセマンティックラベルを統一しています。
論文 参考訳(メタデータ) (2023-06-15T09:56:33Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。