論文の概要: Merging of Kolmogorov-Arnold networks trained on disjoint datasets
- arxiv url: http://arxiv.org/abs/2512.18921v1
- Date: Sun, 21 Dec 2025 23:41:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.556032
- Title: Merging of Kolmogorov-Arnold networks trained on disjoint datasets
- Title(参考訳): 解離データセットに基づくコルモゴロフ・アルノルドネットワークの融合
- Authors: Andrew Polar, Michael Poluektov,
- Abstract要約: 解離データセットのトレーニングは、データ処理の高速化とフェデレーション学習の2つの主要な目標を達成することができる。
ここでは、非結合データセット(またはトレーニングデータセットの非結合サブセット)のトレーニングにより、パフォーマンスがさらに向上することを示した。
- 参考スコア(独自算出の注目度): 0.6875312133832078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training on disjoint datasets can serve two primary goals: accelerating data processing and enabling federated learning. It has already been established that Kolmogorov-Arnold networks (KANs) are particularly well suited for federated learning and can be merged through simple parameter averaging. While the federated learning literature has mostly focused on achieving training convergence across distributed nodes, the present paper specifically targets acceleration of the training, which depends critically on the choice of an optimisation method and the type of the basis functions. To the best knowledge of the authors, the fastest currently-available combination is the Newton-Kaczmarz method and the piecewise-linear basis functions. Here, it is shown that training on disjoint datasets (or disjoint subsets of the training dataset) can further improve the performance. Experimental comparisons are provided, and all corresponding codes are publicly available.
- Abstract(参考訳): 解離データセットのトレーニングは、データ処理の高速化とフェデレーション学習の2つの主要な目標を達成することができる。
コルモゴロフ・アルノルドネットワーク(KAN)は、連邦学習に特に適しており、単純なパラメータ平均化によってマージ可能であることがすでに確立されている。
本研究は,分散ノード間の学習収束の実現に重点を置いているが,本論文は,最適化手法の選択と基礎関数のタイプに依存する訓練の加速を特に対象としている。
著者たちの最もよく知る限り、現在利用可能な最も速い組み合わせはニュートン-カッツマルツ法とピースワイズ-線型基底関数である。
ここでは、非結合データセット(またはトレーニングデータセットの非結合サブセット)のトレーニングにより、パフォーマンスがさらに向上することを示した。
実験的な比較が提供され、対応するコードはすべて公開されています。
関連論文リスト
- A Scalable Pretraining Framework for Link Prediction with Efficient Adaptation [16.82426251068573]
リンク予測(LP)は、グラフ機械学習において重要なタスクである。
既存の手法は、疎結合性からの限られた監督を含む重要な課題に直面している。
これらの課題に対処するためのソリューションとして,事前学習について検討する。
論文 参考訳(メタデータ) (2025-08-06T17:10:31Z) - Private Training & Data Generation by Clustering Embeddings [74.00687214400021]
差分プライバシー(DP)は、個々のデータを保護するための堅牢なフレームワークを提供する。
本稿では,DP合成画像埋め込み生成のための新しい原理的手法を提案する。
経験的に、合成的に生成された埋め込みに基づいて訓練された単純な2層ニューラルネットワークは、最先端(SOTA)分類の精度を達成する。
論文 参考訳(メタデータ) (2025-06-20T00:17:14Z) - Probabilistic Federated Prompt-Tuning with Non-IID and Imbalanced Data [35.47385526394076]
微調整事前学習モデルは、適度なデータで複雑なタスクを解決する機械学習の一般的なアプローチである。
事前訓練されたモデル全体を微調整することは、ローカルデータ分布が多様に歪んだフェデレーションデータシナリオでは効果がない。
提案手法は,フェデレーション学習を分散集合モデリングタスクに変換し,事前学習したモデルを世界規模で微調整するための多様なプロンプトを集約する。
論文 参考訳(メタデータ) (2025-02-27T04:31:34Z) - Loop Improvement: An Efficient Approach for Extracting Shared Features from Heterogeneous Data without Central Server [16.249442761713322]
LI(Loop Improvement)は、この分離と特徴抽出を、参加者間の中央サーバやデータ交換を必要とせずに強化する新しい手法である。
パーソナライズされたフェデレーション学習環境では、LIは様々なシナリオで高度なFedALAアルゴリズムよりも精度が高い。
LIの適応性はマルチタスク学習にまで拡張され、タスク間で共通の機能の抽出が合理化され、同時にトレーニングする必要がなくなる。
論文 参考訳(メタデータ) (2024-03-21T12:59:24Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Factor-Assisted Federated Learning for Personalized Optimization with
Heterogeneous Data [6.024145412139383]
フェデレートラーニング(Federated Learning)は、データプライバシ保護を目的とした、新興の分散機械学習フレームワークである。
異なるクライアントのデータには、共通の知識とパーソナライズされた知識の両方が含まれている。
我々は、FedSplitと呼ばれる異種データのための、新しい個人化されたフェデレーション学習フレームワークを開発した。
論文 参考訳(メタデータ) (2023-12-07T13:05:47Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
合成クエリと組み合わせた,ノイズの多い自己学習フレームワークを提案する。
実験結果から,本手法は既存手法よりも一貫した改善が得られた。
我々の手法はデータ効率が良く、競争のベースラインより優れています。
論文 参考訳(メタデータ) (2023-11-27T06:19:50Z) - Composable Core-sets for Diversity Approximation on Multi-Dataset
Streams [4.765131728094872]
構成可能なコアセットはコアセットであり、コアセットのサブセットを結合して元のデータに対する近似を得るという性質を持つ。
本研究では,構成可能なコアセットを構築するためのコアセット構築アルゴリズムを導入し,アクティブな学習環境におけるストリームデータを要約する。
論文 参考訳(メタデータ) (2023-08-10T23:24:51Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
本稿では,正と負の相関関係を持つタスクに対する分散・フェデレーション学習アルゴリズムを提案する。
本アルゴリズムでは,タスク間の相関関係を自動的に計算し,コミュニケーショングラフを動的に調整して相互に有益なタスクを接続し,互いに悪影響を及ぼす可能性のあるタスクを分離する。
合成ガウスデータセットと大規模セレブ属性(CelebA)データセットについて実験を行った。
論文 参考訳(メタデータ) (2022-12-21T18:58:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。