論文の概要: AgentMath: Empowering Mathematical Reasoning for Large Language Models via Tool-Augmented Agent
- arxiv url: http://arxiv.org/abs/2512.20745v2
- Date: Sat, 27 Dec 2025 18:10:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 13:10:31.581376
- Title: AgentMath: Empowering Mathematical Reasoning for Large Language Models via Tool-Augmented Agent
- Title(参考訳): AgentMath: ツール拡張エージェントによる大規模言語モデルに対する数学的推論の強化
- Authors: Haipeng Luo, Huawen Feng, Qingfeng Sun, Can Xu, Kai Zheng, Yufei Wang, Tao Yang, Han Hu, Yansong Tang, Di Wang,
- Abstract要約: o3やDeepSeek-R1のようなLarge Reasoning Models (LRM)は、長いチェーン・オブ・シークレットを持つ自然言語推論において顕著な進歩を遂げている。
しかし、計算的に非効率であり、複雑な数学的操作を必要とする問題を解く際には精度に苦しむ。
本稿では,言語モデルの推論能力とコードインタプリタの計算精度をシームレスに統合するエージェントフレームワークであるAgentMathを紹介する。
- 参考スコア(独自算出の注目度): 80.83250816918861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Reasoning Models (LRMs) like o3 and DeepSeek-R1 have achieved remarkable progress in natural language reasoning with long chain-of-thought. However, they remain computationally inefficient and struggle with accuracy when solving problems requiring complex mathematical operations. In this work, we present AgentMath, an agent framework that seamlessly integrates language models' reasoning capabilities with code interpreters' computational precision to efficiently tackle complex mathematical problems. Our approach introduces three key innovations: (1) An automated method that converts natural language chain-of-thought into structured tool-augmented trajectories, generating high-quality supervised fine-tuning (SFT) data to alleviate data scarcity; (2) A novel agentic reinforcement learning (RL) paradigm that dynamically interleaves natural language generation with real-time code execution. This enables models to autonomously learn optimal tool-use strategies through multi-round interactive feedback, while fostering emergent capabilities in code refinement and error correction; (3) An efficient training system incorporating innovative techniques, including request-level asynchronous rollout scheduling, agentic partial rollout, and prefix-aware weighted load balancing, achieving 4-5x speedup and making efficient RL training feasible on ultra-long sequences with scenarios with massive tool invocation. The evaluations show that AgentMath achieves state-of-the-art performance on challenging mathematical competition benchmarks including AIME24, AIME25, and HMMT25. Specifically, AgentMath-30B-A3B attains 90.6%, 86.4%, and 73.8% accuracy respectively, achieving advanced performance. The results validate the effectiveness of our approach and pave the way for building more sophisticated and scalable mathematical reasoning agents.
- Abstract(参考訳): o3やDeepSeek-R1のようなLarge Reasoning Models (LRM)は、長いチェーン・オブ・シークレットを持つ自然言語推論において顕著な進歩を遂げている。
しかし、計算的に非効率であり、複雑な数学的操作を必要とする問題を解く際には精度に苦しむ。
本稿では,言語モデルの推論能力とコードインタプリタの計算精度をシームレスに統合し,複雑な数学的問題に効率的に対処するエージェントフレームワークであるAgentMathを提案する。
提案手法では,(1)自然言語連鎖を構造化ツール拡張トラジェクトリに変換し,高品質な教師付き微調整(SFT)データを生成してデータ不足を軽減する自動手法,(2)動的に自然言語生成とリアルタイムコード実行をインターリーブする新しいエージェント強化学習(RL)パラダイムを提案する。
これにより、複数ラウンドの対話的フィードバックを通じて最適なツール利用戦略を自律的に学習し、コード修正とエラー修正の創発的能力を高めながら、(3)要求レベルの非同期ロールアウトスケジューリング、エージェント部分ロールアウト、プレフィックス対応重み付けロードバランシングなど、革新的な技術を取り入れた効率的なトレーニングシステムを実現する。
評価の結果,AIME24,AIME25,HMMT25などの挑戦的な数学競合ベンチマークにおいて,AgentMathは最先端の性能を発揮することがわかった。
具体的には、AgentMath-30B-A3Bはそれぞれ90.6%、86.4%、73.8%の精度で性能が向上した。
その結果、我々の手法の有効性を検証し、より高度でスケーラブルな数学的推論エージェントを構築するための道を開いた。
関連論文リスト
- LoCoBench-Agent: An Interactive Benchmark for LLM Agents in Long-Context Software Engineering [90.84806758077536]
textbfLoCoBench-Agentは,大規模言語モデル(LLM)エージェントを現実的,長期的ソフトウェア工学で評価するための総合的な評価フレームワークである。
我々のフレームワークは、LoCoBenchの8000のシナリオを対話型エージェント環境に拡張し、マルチターン会話の体系的評価を可能にする。
我々のフレームワークは,8つの特殊なツール(ファイル操作,検索,コード解析)をエージェントに提供し,それを10Kから1Mトークンの範囲で評価する。
論文 参考訳(メタデータ) (2025-11-17T23:57:24Z) - Demystifying Reinforcement Learning in Agentic Reasoning [90.3737088727791]
エージェント推論における強化学習のデミスティフィケーションのための包括的かつ体系的な調査を行う。
i) 縫合された合成軌道を、実際のエンドツーエンドのツール・ツー・ユース・トラジェクトリに置き換えることで、より強力なSFTが得られる。
探索フレンドリーな技術は、高いクリップ、過剰な報酬形成、適切なポリシーエントロピーの維持といったエージェントRLにとって不可欠であり、訓練効率を向上させることができる。
論文 参考訳(メタデータ) (2025-10-13T17:57:15Z) - Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning [29.280386584974455]
大規模言語モデル(LLM)の最近の進歩はテスト時間スケーリングを普及させ、モデルが最終回答を生成する前にさらなる推論トークンを生成する。
これらの手法は、数学的推論を含むベンチマークにおいて顕著な性能向上を示した。
本稿では,マルチホップ推論と適応型ツールコール機能を統合した新しい強化学習フレームワークであるツール拡張ポリシー最適化(TAPO)を提案する。
論文 参考訳(メタデータ) (2025-10-08T14:04:27Z) - TableMind: An Autonomous Programmatic Agent for Tool-Augmented Table Reasoning [10.267950603662776]
TableMindは、データ分析と正確な数値推論のために、セキュアなサンドボックス環境で、マルチターンツールの実行、書き込み、実行を自律的に実行する、ツール統合テーブル推論エージェントである。
これらの機能を実現するために、我々は強力な事前学習言語モデルの上に構築された2段階の微調整パラダイムを採用する。
論文 参考訳(メタデータ) (2025-09-08T02:00:31Z) - Acting Less is Reasoning More! Teaching Model to Act Efficiently [87.28134636548705]
ツール統合推論は、タスクを解決するために外部ツールを呼び出す機能によって、大きな言語モデルを拡張します。
現在のアプローチは、外部ツールの使用効率や必要性を考慮せずに、最終的な正確性のためにのみ最適化されている。
最小限のツールコールで正確な回答をモデルに提示するフレームワークを提案する。
このアプローチでは,ツールコールを最大68.3%削減し,ツールの生産性を最大215.4%向上すると同時に,同等の回答精度を維持している。
論文 参考訳(メタデータ) (2025-04-21T05:40:05Z) - ReTool: Reinforcement Learning for Strategic Tool Use in LLMs [27.07998056454784]
ReToolは、ツール統合学習によるロングフォーム推論を強化する。
モデルは400のトレーニングステップで67%の精度を達成する。
注目すべきは、ReTool-32Bが72.5%の精度で設定できることだ。
論文 参考訳(メタデータ) (2025-04-15T18:10:22Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。