論文の概要: Latent Implicit Visual Reasoning
- arxiv url: http://arxiv.org/abs/2512.21218v1
- Date: Wed, 24 Dec 2025 14:59:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-25 19:43:21.806612
- Title: Latent Implicit Visual Reasoning
- Title(参考訳): 潜在性視覚的推論
- Authors: Kelvin Li, Chuyi Shang, Leonid Karlinsky, Rogerio Feris, Trevor Darrell, Roei Herzig,
- Abstract要約: 本稿では,視覚的推論トークンの発見と使用をLMMに指示するタスク非依存機構を提案する。
提案手法は直接微調整より優れ,様々な視覚中心のタスクにおいて最先端の結果が得られる。
- 参考スコア(独自算出の注目度): 59.39913238320798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Multimodal Models (LMMs) have made significant progress, they remain largely text-centric, relying on language as their core reasoning modality. As a result, they are limited in their ability to handle reasoning tasks that are predominantly visual. Recent approaches have sought to address this by supervising intermediate visual steps with helper images, depth maps, or image crops. However, these strategies impose restrictive priors on what "useful" visual abstractions look like, add heavy annotation costs, and struggle to generalize across tasks. To address this critical limitation, we propose a task-agnostic mechanism that trains LMMs to discover and use visual reasoning tokens without explicit supervision. These tokens attend globally and re-encode the image in a task-adaptive way, enabling the model to extract relevant visual information without hand-crafted supervision. Our approach outperforms direct fine-tuning and achieves state-of-the-art results on a diverse range of vision-centric tasks -- including those where intermediate abstractions are hard to specify -- while also generalizing to multi-task instruction tuning.
- Abstract(参考訳): 大規模マルチモーダルモデル(LMM)は大きな進歩を遂げているが、それらは主にテキスト中心であり、言語を中核的な推論モダリティとして依存している。
結果として、主に視覚的な推論タスクを扱う能力は限られている。
近年のアプローチでは、ヘルパー画像、深度マップ、画像作物による中間的な視覚ステップの監視によって、この問題に対処しようとしている。
しかしながら、これらの戦略は、"有用な"視覚的抽象化がどのようなものかという制限的な優先順位を課し、重いアノテーションのコストを追加し、タスクをまたいだ一般化に苦慮する。
この限界に対処するために,視覚的推論トークンの発見・使用をLMMに指示するタスク非依存機構を提案する。
これらのトークンは世界中に集まり、タスク適応的な方法でイメージを再エンコードすることで、手作りの監督なしに関連する視覚情報を抽出することができる。
提案手法は直接微調整よりも優れ,様々な視覚中心タスク(中間抽象が特定が難しいタスクを含む)における最先端の成果を達成し,マルチタスク命令チューニングにも一般化する。
関連論文リスト
- ZSPAPrune: Zero-Shot Prompt-Aware Token Pruning for Vision-Language Models [7.7352936204066]
本稿では,タスク関連性と情報多様性のバランスとして,視覚トークンプルーニングをモデル化する新しいゼロショット手法を提案する。
本手法は,精度の低下を最小限に抑えて,最先端技術に適合または超越した性能を実現する。
これらのゲインには、GPUメモリフットプリントの大幅な削減と推論レイテンシが伴っている。
論文 参考訳(メタデータ) (2025-10-20T06:18:47Z) - Training-free Uncertainty Guidance for Complex Visual Tasks with MLLMs [61.64185573373394]
本稿では,MLLMの本質的不確かさをプロアクティブ誘導信号として用いた学習自由フレームワークを提案する。
応答不確実性によって候補の視覚入力をスコアする統一的なメカニズムを導入し、モデルが最も健全なデータに自律的にフォーカスできるようにする。
本研究は,本質的な不確実性を活用することが,細粒度マルチモーダル性能を高めるための強力で汎用的な戦略であることを実証する。
論文 参考訳(メタデータ) (2025-10-01T09:20:51Z) - Visual Representation Alignment for Multimodal Large Language Models [38.319869213758686]
マルチモーダルな大規模言語モデル (MLLM) は、視覚的指導のチューニングで訓練され、様々なタスクにまたがって高い性能を達成している。
しかし、それらはオブジェクトのカウントや空間的推論のような視覚中心のタスクに限られている。
本稿では、MLLMの内部視覚表現と事前学習された視覚基盤モデルとを整合させる、シンプルで効果的な正規化戦略である視覚表現アライメント(VIRAL)を提案する。
論文 参考訳(メタデータ) (2025-09-09T17:59:14Z) - Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing [62.447497430479174]
空間における推論への描画は、視覚空間における基本的な描画操作を通じてLVLMを推論できる新しいパラダイムである。
我々のモデルはVILASRと呼ばれ、様々な空間推論ベンチマークで既存の手法より一貫して優れています。
論文 参考訳(メタデータ) (2025-06-11T17:41:50Z) - Perceiving Beyond Language Priors: Enhancing Visual Comprehension and Attention in Multimodal Models [1.9253106218929117]
MLLM(Multimodal Large Language Models)は、視覚的な入力を完全に活用できないことが多い。
われわれのアプローチはまず、MLLMが画像領域の視覚的理解をどのように構築するかについての洞察を与え、その能力を増幅する技術を導入する。
本稿では,視覚的に依存するトークンの予測能力の定量化と,視覚的に困難なタスクの10 pt の高速化により,結果モデルのより優れたマルチモーダル理解を実証する。
論文 参考訳(メタデータ) (2025-05-08T20:04:27Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。