論文の概要: SWE-RM: Execution-free Feedback For Software Engineering Agents
- arxiv url: http://arxiv.org/abs/2512.21919v1
- Date: Fri, 26 Dec 2025 08:26:18 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-29 11:57:44.467468
- Title: SWE-RM: Execution-free Feedback For Software Engineering Agents
- Title(参考訳): SWE-RM: ソフトウェアエンジニアリングエージェントに対する実行不要なフィードバック
- Authors: KaShun Shum, Binyuan Hui, Jiawei Chen, Lei Zhang, X. W., Jiaxi Yang, Yuzhen Huang, Junyang Lin, Junxian He,
- Abstract要約: 実行ベースフィードバックは、テストタイムスケーリング(TTS)と強化学習(RL)を通じて、コーディングエージェントの開発に広く利用されている。
対照的に、報酬モデルによる実行不要なフィードバックは、単体テストケースに依存することなく、よりきめ細かい信号を提供することができる。
SWE-RMは,30Bの合計パラメータと3Bのアクティベートされた3Bの混合実験アーキテクチャを採用した,正確で堅牢な報酬モデルである。
- 参考スコア(独自算出の注目度): 61.86380395896069
- License:
- Abstract: Execution-based feedback like unit testing is widely used in the development of coding agents through test-time scaling (TTS) and reinforcement learning (RL). This paradigm requires scalable and reliable collection of unit test cases to provide accurate feedback, and the resulting feedback is often sparse and cannot effectively distinguish between trajectories that are both successful or both unsuccessful. In contrast, execution-free feedback from reward models can provide more fine-grained signals without depending on unit test cases. Despite this potential, execution-free feedback for realistic software engineering (SWE) agents remains underexplored. Aiming to develop versatile reward models that are effective across TTS and RL, however, we observe that two verifiers with nearly identical TTS performance can nevertheless yield very different results in RL. Intuitively, TTS primarily reflects the model's ability to select the best trajectory, but this ability does not necessarily generalize to RL. To address this limitation, we identify two additional aspects that are crucial for RL training: classification accuracy and calibration. We then conduct comprehensive controlled experiments to investigate how to train a robust reward model that performs well across these metrics. In particular, we analyze the impact of various factors such as training data scale, policy mixtures, and data source composition. Guided by these investigations, we introduce SWE-RM, an accurate and robust reward model adopting a mixture-of-experts architecture with 30B total parameters and 3B activated during inference. SWE-RM substantially improves SWE agents on both TTS and RL performance. For example, it increases the accuracy of Qwen3-Coder-Flash from 51.6% to 62.0%, and Qwen3-Coder-Max from 67.0% to 74.6% on SWE-Bench Verified using TTS, achieving new state-of-the-art performance among open-source models.
- Abstract(参考訳): 単体テストのような実行ベースのフィードバックは、テスト時間スケーリング(TTS)と強化学習(RL)を通じてコーディングエージェントの開発に広く利用されている。
このパラダイムは、正確なフィードバックを提供するために、スケーラブルで信頼性の高い単体テストケースの収集を必要とします。
対照的に、報酬モデルによる実行不要なフィードバックは、単体テストケースに依存することなく、よりきめ細かい信号を提供することができる。
このような可能性にもかかわらず、現実的なソフトウェアエンジニアリング(SWE)エージェントに対する実行自由フィードバックはいまだに未検討である。
しかし, TTS と RL で有効である多目的報酬モデルの開発を目的として, ほぼ同一の TTS 性能を持つ2つの検証器が RL において全く異なる結果が得られることを観察した。
直感的には、TSはモデルが最良の軌道を選択する能力を主に反映しているが、この能力は必ずしもRLに一般化するとは限らない。
この制限に対処するために、RLトレーニングに不可欠な2つの側面、分類精度と校正を同定する。
次に、これらのメトリクス間でうまく機能する堅牢な報酬モデルをトレーニングする方法を研究するために、包括的な制御実験を行います。
特に、トレーニングデータスケール、ポリシーミックス、データソース構成など、さまざまな要因の影響を分析する。
これらの調査から導かれたSWE-RMは,30Bのパラメータと3Bのパラメータを混合した,正確かつ堅牢な報酬モデルである。
SWE-RMはTSとRLの両方のパフォーマンスにおいてSWEエージェントを大幅に改善する。
例えば、Qwen3-Coder-Flashの精度は51.6%から62.0%に向上し、Qwen3-Coder-Maxは67.0%から74.6%に向上した。
関連論文リスト
- CoT-Saliency: Unified Chain-of-Thought Reasoning for Heterogeneous Saliency Tasks [96.64597365827046]
本稿では,3つの運用上不均一なサリエンシタスクを共同で処理する,最初の統合フレームワークを提案する。
タスクの不均一性を橋渡しする視覚言語モデル(VLM)において、チェーン・オブ・ソート(CoT)推論プロセスを導入する。
我々は,全タスクにまたがる特別なSOTA手法と強力なクローズドソースVLMの整合性を示す。
論文 参考訳(メタデータ) (2025-11-01T04:37:01Z) - Rewarding the Journey, Not Just the Destination: A Composite Path and Answer Self-Scoring Reward Mechanism for Test-Time Reinforcement Learning [29.778703252962092]
大規模言語モデル(LLM)の進化のための強力なパラダイムとして強化学習(RL)が登場した。
外部の監督なしに動作する新しいテストタイム報酬機構を開発した。
論文 参考訳(メタデータ) (2025-10-20T07:53:51Z) - Demystifying Reinforcement Learning in Agentic Reasoning [90.3737088727791]
エージェント推論における強化学習のデミスティフィケーションのための包括的かつ体系的な調査を行う。
i) 縫合された合成軌道を、実際のエンドツーエンドのツール・ツー・ユース・トラジェクトリに置き換えることで、より強力なSFTが得られる。
探索フレンドリーな技術は、高いクリップ、過剰な報酬形成、適切なポリシーエントロピーの維持といったエージェントRLにとって不可欠であり、訓練効率を向上させることができる。
論文 参考訳(メタデータ) (2025-10-13T17:57:15Z) - Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [93.00629872970364]
強化学習(Reinforcement Learning, RL)は, 複雑な推論タスクにおいて, 言語モデルの性能向上のための主要なパラダイムとなっている。
SPARKLE(SPARKLE)は、3つの重要な次元にわたるRLの効果を詳細に解析するフレームワークである。
我々は、RL信号と混合品質の推論トレースを産出しない難題が、依然としてトレーニングに有効であるかどうかを調査する。
論文 参考訳(メタデータ) (2025-06-05T07:53:59Z) - R2E-Gym: Procedural Environments and Hybrid Verifiers for Scaling Open-Weights SWE Agents [32.06393076572057]
AgentGymは、現実世界のSWEエージェントを訓練するための、手続き的に計算された最大のジム環境である。
Syngen、合成データキュレーションのレシピ、ハイブリッドテストタイムスケーリングの2つの主要なコントリビューションによって実現されている。
提案手法は,SWE-Bench Verifiedベンチマークで51%を達成し,オープンウェイトSWEエージェントの新たな最先端性を反映した。
論文 参考訳(メタデータ) (2025-04-09T17:55:19Z) - An Empirical Study on Eliciting and Improving R1-like Reasoning Models [90.52239241349504]
RLトレーニングのスケーリングは、そのような推論モデルを実装するための中心的なテクニックとなっている。
我々のRLトレーニングアプローチはQwen2.5-32Bベースモデルを継続的に改善することを示した。
また、ツール操作の利用についても検討し、大きな推論モデルの推論性能を大幅に向上させることを見出した。
論文 参考訳(メタデータ) (2025-03-06T15:34:27Z) - The Surprising Effectiveness of Test-Time Training for Few-Shot Learning [59.309477460893916]
言語モデル(LM)は、トレーニングディストリビューション内のタスクにおいて印象的なパフォーマンスを示しているが、しばしば構造的に新しいタスクで苦労している。
LMの推論と少数ショット学習能力を改善するメカニズムとして,テストタイムトレーニング(TTT)の有効性を検討する。
本研究は,新しいタスクにおける文脈内学習の限界を強調し,言語モデルの適応性を高めるためのテストタイムトレーニングの可能性を示した。
論文 参考訳(メタデータ) (2024-11-11T18:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。