論文の概要: Visual Autoregressive Modelling for Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2512.22653v1
- Date: Sat, 27 Dec 2025 17:08:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.160809
- Title: Visual Autoregressive Modelling for Monocular Depth Estimation
- Title(参考訳): 単眼深度推定のための視覚自己回帰モデル
- Authors: Amir El-Ghoussani, André Kaup, Nassir Navab, Gustavo Carneiro, Vasileios Belagiannis,
- Abstract要約: 本稿では,視覚的自己回帰(VAR)に基づく単眼深度推定手法を提案する。
提案手法は,大規模テキスト・画像VARモデルに適応し,スケールワイド・コンディショナル・アップサンプリング機構を導入する。
本研究では,屋内ベンチマークにおける制約付きトレーニング条件下での最先端性能と,屋外データセットに適用した場合の強い性能について報告する。
- 参考スコア(独自算出の注目度): 69.01449528371916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a monocular depth estimation method based on visual autoregressive (VAR) priors, offering an alternative to diffusion-based approaches. Our method adapts a large-scale text-to-image VAR model and introduces a scale-wise conditional upsampling mechanism with classifier-free guidance. Our approach performs inference in ten fixed autoregressive stages, requiring only 74K synthetic samples for fine-tuning, and achieves competitive results. We report state-of-the-art performance in indoor benchmarks under constrained training conditions, and strong performance when applied to outdoor datasets. This work establishes autoregressive priors as a complementary family of geometry-aware generative models for depth estimation, highlighting advantages in data scalability, and adaptability to 3D vision tasks. Code available at "https://github.com/AmirMaEl/VAR-Depth".
- Abstract(参考訳): 本稿では,視覚的自己回帰(VAR)に基づく単眼深度推定手法を提案する。
提案手法は,大規模テキスト・画像VARモデルに適応し,分類器レスガイダンスを用いた大規模条件付きアップサンプリング機構を導入する。
提案手法は10個の固定された自己回帰段階において推論を行い, 微調整に74Kの合成サンプルしか必要とせず, 競合的な結果が得られる。
本研究では,屋内ベンチマークにおける制約付きトレーニング条件下での最先端性能と,屋外データセットに適用した場合の強い性能について報告する。
この研究は、深度推定のための幾何認識生成モデルの補完的なファミリとして自己回帰的先行性を確立し、データのスケーラビリティと3次元視覚タスクへの適応性を強調した。
コードは "https://github.com/AmirMaEl/VAR-Depth" で公開されている。
関連論文リスト
- Nonparametric Data Attribution for Diffusion Models [57.820618036556084]
生成モデルのデータ属性は、個々のトレーニング例がモデル出力に与える影響を定量化する。
生成画像とトレーニング画像のパッチレベルの類似性によって影響を測定する非パラメトリック属性法を提案する。
論文 参考訳(メタデータ) (2025-10-16T03:37:16Z) - Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GSはスパースビューガウススプラッティングのプロセスを強化する新しいアプローチである。
Intern-GSは多様なデータセットにまたがって最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2025-05-27T05:17:49Z) - MonoDINO-DETR: Depth-Enhanced Monocular 3D Object Detection Using a Vision Foundation Model [2.0624236247076397]
本研究では,視覚変換器(ViT)をベースとした基礎モデルをバックボーンとし,世界的特徴を抽出して深度推定を行う。
検出変換器(DETR)アーキテクチャを統合し、深度推定と物体検出性能を1段階的に改善する。
提案モデルは、KITTIの3Dベンチマークと高標高レース環境から収集したカスタムデータセットの評価により、最近の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2025-02-01T04:37:13Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - ALOcc: Adaptive Lifting-Based 3D Semantic Occupancy and Cost Volume-Based Flow Predictions [91.55655961014027]
シーン理解には3次元セマンティック占有とフロー予測が不可欠である。
本稿では,3つの改善点を目標とした視覚ベースのフレームワークを提案する。
我々の純粋な畳み込みアーキテクチャは、セマンティック占有率とジョイントセマンティックフロー予測の両方のために、複数のベンチマーク上で新しいSOTA性能を確立する。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - DepthART: Monocular Depth Estimation as Autoregressive Refinement Task [2.3884184860468136]
DepthART - Depth Autoregressive Refinement Taskとして定式化された新しいトレーニング手法を紹介する。
モデル自身の予測を入力として利用することにより、目標を残留最小化とし、トレーニングと推論手順の相違を効果的に軽減する。
提案手法を用いてHypersimデータセットをトレーニングすると、既存の生成的および識別的ベースラインと比較して、複数の未確認ベンチマークで優れた結果が得られる。
論文 参考訳(メタデータ) (2024-09-23T13:36:34Z) - Enhancing Generalization in Medical Visual Question Answering Tasks via
Gradient-Guided Model Perturbation [16.22199565010318]
本稿では,事前学習と微調整の両段階における多モードモデルの視覚エンコーダに勾配誘導摂動を組み込む手法を提案する。
その結果,訓練前の画像キャプションデータセットが大幅に小さくても,本手法は競合的な結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-03-05T06:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。