論文の概要: AVOID: The Adverse Visual Conditions Dataset with Obstacles for Driving Scene Understanding
- arxiv url: http://arxiv.org/abs/2512.23215v1
- Date: Mon, 29 Dec 2025 05:34:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.410802
- Title: AVOID: The Adverse Visual Conditions Dataset with Obstacles for Driving Scene Understanding
- Title(参考訳): AVOID:シーン理解を促進するための障害物付き逆視覚条件データセット
- Authors: Jongoh Jeong, Taek-Jin Song, Jong-Hwan Kim, Kuk-Jin Yoon,
- Abstract要約: シミュレーション環境におけるリアルタイム障害物検出のための新しいデータセットであるAVOIDを紹介する。
AVOIDは、様々な天候と時間条件下で捕獲された各経路に沿って、予期せぬ道路障害物からなる。
各画像は、対応するセマンティックマップと深度マップ、生およびセマンティックLiDARデータ、およびウェイポイントと結合される。
- 参考スコア(独自算出の注目度): 48.97660297411286
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding road scenes for visual perception remains crucial for intelligent self-driving cars. In particular, it is desirable to detect unexpected small road hazards reliably in real-time, especially under varying adverse conditions (e.g., weather and daylight). However, existing road driving datasets provide large-scale images acquired in either normal or adverse scenarios only, and often do not contain the road obstacles captured in the same visual domain as for the other classes. To address this, we introduce a new dataset called AVOID, the Adverse Visual Conditions Dataset, for real-time obstacle detection collected in a simulated environment. AVOID consists of a large set of unexpected road obstacles located along each path captured under various weather and time conditions. Each image is coupled with the corresponding semantic and depth maps, raw and semantic LiDAR data, and waypoints, thereby supporting most visual perception tasks. We benchmark the results on high-performing real-time networks for the obstacle detection task, and also propose and conduct ablation studies using a comprehensive multi-task network for semantic segmentation, depth and waypoint prediction tasks.
- Abstract(参考訳): 視覚的知覚のための道路シーンを理解することは、インテリジェントな自動運転車にとって不可欠だ。
特に、特に悪条件(天気や日照など)の異なる状況下で、予期せぬ小道路の危険をリアルタイムで確実に検出することが望ましい。
しかし、既存の道路運転データセットは、通常または有害なシナリオでのみ取得された大規模な画像を提供し、多くの場合、他のクラスと同じ視覚領域でキャプチャされた道路障害物を含まない。
そこで本研究では,シミュレーション環境で収集した実時間障害物検出のためのAVOID(Adverse Visual Conditions Dataset)という新しいデータセットを提案する。
AVOIDは、様々な天候と時間条件下で捕獲された各経路に沿って、予期せぬ道路障害物からなる。
各画像は、対応するセマンティックマップと深度マップ、生およびセマンティックLiDARデータ、およびウェイポイントと結合され、ほとんどの視覚的知覚タスクをサポートする。
本研究は,障害物検出タスクのための高性能リアルタイムネットワークのベンチマークを行い,また,セマンティックセグメンテーション,深度,ウェイポイント予測タスクのための総合マルチタスクネットワークを用いたアブレーション研究を提案し,実施する。
関連論文リスト
- DAVE: Diverse Atomic Visual Elements Dataset with High Representation of Vulnerable Road Users in Complex and Unpredictable Environments [60.69159598130235]
Vulnerable Road Users (VRU) の高表現による認識手法の評価を目的とした新しいデータセット DAVE を提案する。
DAVEは16種類のアクターカテゴリー(動物、人間、車など)と16種類のアクションタイプ(カットイン、ジグザグ運動、Uターンなど、複雑で稀なケース)を手動でアノテートしたデータセットである。
実験の結果,既存の手法はDAVEで評価すると性能の劣化に悩まされ,将来的なビデオ認識研究のメリットを浮き彫りにしていることがわかった。
論文 参考訳(メタデータ) (2024-12-28T06:13:44Z) - RSUD20K: A Dataset for Road Scene Understanding In Autonomous Driving [6.372000468173298]
RSUD20Kは、バングラデシュの道路の運転から見た20K以上の高解像度画像からなる、道路シーン理解のための新しいデータセットである。
我々の作業は以前の取り組みを大幅に改善し、詳細なアノテーションを提供し、オブジェクトの複雑さを増大させます。
論文 参考訳(メタデータ) (2024-01-14T16:10:42Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormerは、GPSデータ、環境コンテキスト、運転者の視野を組み合わせた新しいエゴ軌道予測ネットワークである。
データ不足に対処し、多様性を高めるために、同期運転場と視線データに富んだ都市運転シナリオのデータセットであるGEMを導入する。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
我々は、新しいデータ収集プロセスを通じて、堅牢な自律運転を可能にする新しいデータセットを提案する。
データセットには、高精度GPS/INSとともに、カメラとLiDARセンサーからの画像と点雲が含まれている。
道路・オブジェクトのアモーダルセグメンテーションにおけるベースラインの性能を解析することにより,このデータセットの特異性を実証する。
論文 参考訳(メタデータ) (2022-08-01T22:55:32Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
小さな、遠く、あるいは非常に隠蔽された物体は、検出するためのLiDAR点雲に限られた情報があるため、特に困難である。
本稿では,過去データから文脈情報を抽出する,エンドツーエンドのトレーニング可能な新しいフレームワークを提案する。
このフレームワークは現代のほとんどの3D検出アーキテクチャと互換性があり、複数の自律走行データセットの平均精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-03-22T00:58:27Z) - DAWN: Vehicle Detection in Adverse Weather Nature Dataset [4.09920839425892]
本研究では,DAWNと呼ばれる各種気象条件下で収集した実世界の画像からなる新しいデータセットを提案する。
このデータセットは、実際の交通環境から1000枚の画像を集め、霧、雪、雨、砂嵐の4つの天候条件に分けられる。
このデータは,車両検知システムの性能に及ぼす悪天候の影響の解明に有効である。
論文 参考訳(メタデータ) (2020-08-12T15:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。