論文の概要: Group Deliberation Oriented Multi-Agent Conversational Model for Complex Reasoning
- arxiv url: http://arxiv.org/abs/2512.24613v1
- Date: Wed, 31 Dec 2025 04:10:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.563809
- Title: Group Deliberation Oriented Multi-Agent Conversational Model for Complex Reasoning
- Title(参考訳): 複合推論のための群検討指向多元会話モデル
- Authors: Zheyu Shi, Dong Qiu, Shanlong Yu,
- Abstract要約: 本稿では,複雑な推論タスクにおける単一大言語モデルの制約に対処するため,グループ検討指向のマルチエージェント対話モデルを提案する。
実験の結果,提案モデルではHotpotQAでは16.8%,2WikiMultihopQAでは14.3%,ミーティングバンクでは19.2%の精度でマルチホップ推論精度が向上した。
- 参考スコア(独自算出の注目度): 0.30586855806896046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a group deliberation oriented multi-agent conversational model to address the limitations of single large language models in complex reasoning tasks. The model adopts a three-level role division architecture consisting of generation, verification, and integration. An opinion generation agent produces diverse reasoning perspectives, an evidence verification agent retrieves external knowledge and quantifies factual support, and a consistency arbitration agent integrates logically coherent conclusions. A self-game mechanism is introduced to expand multi-path reasoning trajectories, while a retrieval enhancement module dynamically supplements external knowledge. A composite reward function combining factual consistency and logical coherence is designed, and an improved proximal policy optimization strategy is applied for collaborative training. Experimental results show that the proposed model improves multi-hop reasoning accuracy by 16.8 percent on HotpotQA, 14.3 percent on 2WikiMultihopQA, and 19.2 percent on MeetingBank, while improving consistency by 21.5 percent. The model achieves higher reasoning efficiency than mainstream multi-agent approaches, providing an effective and stable solution for complex reasoning tasks.
- Abstract(参考訳): 本稿では,複雑な推論タスクにおける単一大言語モデルの制約に対処するため,グループ検討指向のマルチエージェント対話モデルを提案する。
このモデルは、生成、検証、統合からなる3段階の役割分割アーキテクチャを採用する。
意見生成エージェントは多様な推論視点を生成し、証拠検証エージェントは外部知識を検索して事実支援を定量化し、一貫性仲裁エージェントは論理的に一貫性のある結論を統合する。
自己ゲーム機構を導入し、マルチパス推論軌道を拡張し、検索拡張モジュールは外部知識を動的に補う。
事実整合性と論理コヒーレンスを組み合わせた複合報酬関数を設計し、協調学習に近親政策最適化戦略を改良した。
実験の結果,提案モデルではHotpotQAでは16.8%,2WikiMultihopQAでは14.3%,ミーティングバンクでは19.2%,一貫性は21.5パーセント向上した。
このモデルは、主流のマルチエージェントアプローチよりも高い推論効率を実現し、複雑な推論タスクに対して効果的で安定したソリューションを提供する。
関連論文リスト
- MMhops-R1: Multimodal Multi-hop Reasoning [89.68086555694084]
マルチモーダルマルチホップ推論の評価と育成を目的とした新しいベンチマークであるMMhopを紹介した。
MMhopsデータセットは、ブリッジと比較という2つの困難なタスクフォーマットで構成されている。
動的推論のための新しいマルチモーダル検索拡張フレームワークMMhops-R1を提案する。
論文 参考訳(メタデータ) (2025-12-15T17:29:02Z) - OPTAGENT: Optimizing Multi-Agent LLM Interactions Through Verbal Reinforcement Learning for Enhanced Reasoning [14.105640933123325]
大規模言語モデル(LLM)は、数学的および科学的タスクにおいて顕著な推論能力を示している。
複雑な推論を強化するため、LLMエージェントの集合的知性を活用するためにマルチエージェントシステムが提案されている。
複数エージェントの協調構造を動的に構築・洗練する多エージェント言語強化学習アルゴリズムである$ours$を提案する。
論文 参考訳(メタデータ) (2025-10-20T19:07:51Z) - Reasoning-Aware Prompt Orchestration: A Foundation Model for Multi-Agent Language Model Coordination [0.0]
複数の特殊エージェント間の推論を強化する動的プロンプトオーケストレーションのための理論的基盤となるフレームワークを提案する。
このフレームワークは,エージェント移行時の論理的一貫性の維持,推論対応の迅速な適応,分散推論のスケーラブルな調整,という3つの課題に対処する。
1000件の合成マルチエージェント会話実験の結果,推論遅延の42%低減,ROUGE-Lスコアによる論理的整合性の23%改善,文脈損失のないタスク完了の89%の成功率が確認された。
論文 参考訳(メタデータ) (2025-09-30T22:33:01Z) - AgentCDM: Enhancing Multi-Agent Collaborative Decision-Making via ACH-Inspired Structured Reasoning [8.566904810788213]
AgentCDMはマルチエージェントシステムにおける協調的意思決定を強化するための構造化フレームワークである。
認知バイアスを内部化し、意思決定を受動的回答の選択からアクティブな仮説評価と構築へとシフトさせる。
複数のベンチマークデータセットの実験は、AgentCDMが最先端のパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2025-08-16T09:46:04Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
我々はマルチエージェント・マルチモデル推論を生成にまで拡張し、特に改良による忠実度の向上を図っている。
我々は,各サブタスクに対して固有の評価を設計し,マルチエージェント(複数インスタンス)とマルチモデル(多変数LPMタイプ)の両方がエラー検出やクオリティクスに有効であることを示す。
我々はこれらの知見を、マルチエージェント・マルチモデル・リファインメント(MAMM-Refinement)と呼ばれる最終的な"レシピ"に統合し、マルチエージェント・マルチモデルコラボレーションがパフォーマンスを大幅に向上させる。
論文 参考訳(メタデータ) (2025-03-19T14:46:53Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Collaboration Dynamics and Reliability Challenges of Multi-Agent LLM Systems in Finite Element Analysis [3.437656066916039]
インターエイジェントダイナミクスが推論の品質と信頼性にどのように影響するかは、まだ不明である。
線形弾性有限要素解析(FEA)のためのAutoGenベースのマルチエージェントフレームワークを用いたこれらのメカニズムについて検討する。
1,120のコントロールされたトライアルから、コラボレーションの有効性は、チームのサイズよりも機能的な相補性に依存することが分かりました。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training [49.3242278912771]
マルチモーダル推論(multimodal reasoning)は、複数のモーダルをまたいだモデルによる質問に答える難しいタスクである。
既存のアプローチでは、言語と視覚のモダリティを2段階の推論フレームワークに組み込むことで進歩している。
MC-CoTは,複数の合理性と回答を生成し,投票プロセスを通じて最も正確な選択を行う自己整合性学習戦略である。
論文 参考訳(メタデータ) (2023-11-23T17:09:48Z) - ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs [61.07130026622437]
大規模言語モデル(LLM)は、まだ自然言語推論タスクに苦戦している。
心の社会に動機づけられて、我々はReConcileを提案する。
LLMエージェント間のラウンドテーブル会議として設計されたマルチモデルマルチエージェントフレームワーク。
論文 参考訳(メタデータ) (2023-09-22T17:12:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。