論文の概要: Semi-Automated Data Annotation in Multisensor Datasets for Autonomous Vehicle Testing
- arxiv url: http://arxiv.org/abs/2512.24896v1
- Date: Wed, 31 Dec 2025 14:43:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.6809
- Title: Semi-Automated Data Annotation in Multisensor Datasets for Autonomous Vehicle Testing
- Title(参考訳): 自動運転車テスト用マルチセンサデータセットにおける半自動データアノテーション
- Authors: Andrii Gamalii, Daniel Górniak, Robert Nowak, Bartłomiej Olber, Krystian Radlak, Jakub Winter,
- Abstract要約: 本稿では,DARTSプロジェクト内で開発された半自動データアノテーションパイプラインの設計と実装について述べる。
DARTSプロジェクトの目標は、ポーランドの条件で記録された運転シナリオの大規模なマルチモーダルデータセットを作成することだ。
提案手法では,AIと人間の専門知識を組み合わせることで,アノテーションのコストと持続時間を削減する。
- 参考スコア(独自算出の注目度): 2.5225534362856767
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This report presents the design and implementation of a semi-automated data annotation pipeline developed within the DARTS project, whose goal is to create a large-scale, multimodal dataset of driving scenarios recorded in Polish conditions. Manual annotation of such heterogeneous data is both costly and time-consuming. To address this challenge, the proposed solution adopts a human-in-the-loop approach that combines artificial intelligence with human expertise to reduce annotation cost and duration. The system automatically generates initial annotations, enables iterative model retraining, and incorporates data anonymization and domain adaptation techniques. At its core, the tool relies on 3D object detection algorithms to produce preliminary annotations. Overall, the developed tools and methodology result in substantial time savings while ensuring consistent, high-quality annotations across different sensor modalities. The solution directly supports the DARTS project by accelerating the preparation of large annotated dataset in the project's standardized format, strengthening the technological base for autonomous vehicle research in Poland.
- Abstract(参考訳): 本稿では,DARTSプロジェクトで開発された半自動データアノテーションパイプラインの設計と実装について述べる。
このような異種データのマニュアルアノテーションは費用も時間もかかる。
この課題に対処するため、提案したソリューションは、AIと人間の専門知識を組み合わせてアノテーションのコストと持続時間を削減する、ヒューマン・イン・ザ・ループのアプローチを採用する。
システムは、初期アノテーションを自動的に生成し、反復的なモデル再トレーニングを可能にし、データ匿名化とドメイン適応技術を組み込む。
ツールの中核となるのは、3Dオブジェクト検出アルゴリズムを使って事前アノテーションを生成することだ。
全体として、開発ツールと方法論は、様々なセンサーのモダリティにまたがる一貫性のある高品質なアノテーションを確保しながら、大幅な時間節約をもたらす。
このソリューションは、プロジェクトの標準化フォーマットにおける大きな注釈付きデータセットの準備を加速し、ポーランドにおける自動運転車研究の技術基盤を強化することで、DARTSプロジェクトを直接サポートする。
関連論文リスト
- Forging Spatial Intelligence: A Roadmap of Multi-Modal Data Pre-Training for Autonomous Systems [75.78934957242403]
自動運転車とドローンは、マルチモーダル搭載センサーデータから真の空間情報を必要とする。
本稿では,この目標に向かって進む中核的な技術群を同定し,マルチモーダル・プレトレーニングのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2025-12-30T17:58:01Z) - Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
16時間から8192時間に及ぶ内部駆動データセット上での簡易エンド・ツー・エンド駆動アーキテクチャの性能評価を行った。
具体的には、目標の性能向上を達成するために、どの程度のトレーニングデータが必要かを調査する。
論文 参考訳(メタデータ) (2025-04-06T03:23:48Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - ANNA: A Deep Learning Based Dataset in Heterogeneous Traffic for
Autonomous Vehicles [2.932123507260722]
本研究ではバングラデシュの視点で、特定されていない車両を含むカスタムビルドデータセットについて論じる。
IOU(Intersection Over Union)メトリックを用いたモデルの評価により,データセットの妥当性チェックを行った。
その結果、バングラデシュのトラフィックに関するKITTIまたはCOCOデータセットでトレーニングされたモデルよりも、カスタムデータセットでトレーニングされたモデルの方が正確で効率的であることが判明した。
論文 参考訳(メタデータ) (2024-01-21T01:14:04Z) - An Efficient Semi-Automated Scheme for Infrastructure LiDAR Annotation [15.523875367380196]
トラッキングアルゴリズムを用いてLiDARシーケンスを自動的にアノテートする,効率的な半自動アノテーションツールを提案する。
本ツールでは,マルチオブジェクト追跡(MOT),シングルオブジェクト追跡(SOT),適切なトラック後処理手法をシームレスに統合する。
論文 参考訳(メタデータ) (2023-01-25T17:42:15Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Large Scale Autonomous Driving Scenarios Clustering with Self-supervised
Feature Extraction [6.804209932400134]
本稿では,自動車運転データの大規模集合に対する包括的データクラスタリングフレームワークを提案する。
提案手法では,トラヒック内エージェントオブジェクトとマップ情報の両方を含むトラフィック要素を網羅的に検討する。
新たに設計されたデータクラスタリング評価メトリクスは、データ拡張に基づくものであるため、精度評価には人間のラベル付きデータセットは必要ない。
論文 参考訳(メタデータ) (2021-03-30T06:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。