論文の概要: Explainability-Guided Defense: Attribution-Aware Model Refinement Against Adversarial Data Attacks
- arxiv url: http://arxiv.org/abs/2601.00968v1
- Date: Fri, 02 Jan 2026 19:36:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:21.886807
- Title: Explainability-Guided Defense: Attribution-Aware Model Refinement Against Adversarial Data Attacks
- Title(参考訳): 説明責任誘導型防衛 : 敵データ攻撃に対する帰属意識モデル修正
- Authors: Longwei Wang, Mohammad Navid Nayyem, Abdullah Al Rakin, KC Santosh, Chaowei Zhang, Yang Zhou,
- Abstract要約: 私たちは、トレーニング中に直接活用できる、解釈可能性と堅牢性との関連性を特定します。
本稿では,局所解釈可能なモデル非依存表現をアクティブな訓練信号に変換する属性誘導型改良フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.573058520271728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing reliance on deep learning models in safety-critical domains such as healthcare and autonomous navigation underscores the need for defenses that are both robust to adversarial perturbations and transparent in their decision-making. In this paper, we identify a connection between interpretability and robustness that can be directly leveraged during training. Specifically, we observe that spurious, unstable, or semantically irrelevant features identified through Local Interpretable Model-Agnostic Explanations (LIME) contribute disproportionately to adversarial vulnerability. Building on this insight, we introduce an attribution-guided refinement framework that transforms LIME from a passive diagnostic into an active training signal. Our method systematically suppresses spurious features using feature masking, sensitivity-aware regularization, and adversarial augmentation in a closed-loop refinement pipeline. This approach does not require additional datasets or model architectures and integrates seamlessly into standard adversarial training. Theoretically, we derive an attribution-aware lower bound on adversarial distortion that formalizes the link between explanation alignment and robustness. Empirical evaluations on CIFAR-10, CIFAR-10-C, and CIFAR-100 demonstrate substantial improvements in adversarial robustness and out-of-distribution generalization.
- Abstract(参考訳): 医療や自律ナビゲーションといった安全クリティカルな領域におけるディープラーニングモデルへの依存度が高まっていることは、敵の摂動に対して堅牢で、意思決定において透明な防御の必要性を浮き彫りにしている。
本稿では,学習中に直接活用できる解釈可能性と頑健さの関連性を明らかにする。
具体的には、LIME(Local Interpretable Model-Agnostic Explanations)によって識別される、スプリアス的、不安定、あるいは意味的に無関係な特徴が、敵の脆弱性に相反するものであることを観察する。
この知見に基づいて,LIMEを受動的診断から能動的訓練信号に変換する属性誘導改善フレームワークを導入する。
本手法は, 閉ループ精製パイプラインにおける特徴マスキング, 感度認識正則化, 対向性増強による突発的特徴を系統的に抑制する。
このアプローチでは、追加のデータセットやモデルアーキテクチャは必要とせず、標準的な敵のトレーニングにシームレスに統合される。
理論的には、説明アライメントとロバストネスのリンクを形式化する対向歪みに対する帰属意識の低い境界を導出する。
CIFAR-10, CIFAR-10-C, CIFAR-100の実験的評価は, 対向的ロバスト性および分布外一般化の大幅な改善を示した。
関連論文リスト
- Bridging Symmetry and Robustness: On the Role of Equivariance in Enhancing Adversarial Robustness [9.013874391203453]
敵対的な例では、知覚不能な入力摂動に対する感度を利用して、ディープニューラルネットワークの重大な脆弱性を明らかにしている。
本研究では,群-同変畳み込みを組込み,対向ロバスト性に対するアーキテクチャ的アプローチについて検討する。
これらの層は、モデル行動と入力空間の構造化変換を整合させる対称性の先行を符号化し、よりスムーズな決定境界を促進する。
論文 参考訳(メタデータ) (2025-10-17T19:26:58Z) - Retrieval is Not Enough: Enhancing RAG Reasoning through Test-Time Critique and Optimization [58.390885294401066]
Retrieval-augmented Generation (RAG) は知識基底型大規模言語モデル(LLM)を実現するためのパラダイムとして広く採用されている。
RAGパイプラインは、モデル推論が得られた証拠と整合性を維持するのに失敗することが多く、事実上の矛盾や否定的な結論につながる。
批判駆動アライメント(CDA)に基づく新しい反復的枠組みであるAlignRAGを提案する。
AlignRAG-autoは、動的に洗練を終了し、批判的な反復回数を事前に指定する必要がなくなる自律的な変種である。
論文 参考訳(メタデータ) (2025-04-21T04:56:47Z) - Bridging Interpretability and Robustness Using LIME-Guided Model Refinement [0.0]
LIME(Local Interpretable Model-Agnostic Explanations)は、モデルロバスト性を体系的に強化する。
複数のベンチマークデータセットに対する実証的な評価は、LIME誘導の洗練は解釈可能性を改善するだけでなく、敵の摂動に対する耐性を著しく向上し、アウト・オブ・ディストリビューションデータへの一般化を促進することを示している。
論文 参考訳(メタデータ) (2024-12-25T17:32:45Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Perturbation-Invariant Adversarial Training for Neural Ranking Models:
Improving the Effectiveness-Robustness Trade-Off [107.35833747750446]
正統な文書に不可避な摂動を加えることで 敵の例を作れます
この脆弱性は信頼性に関する重大な懸念を生じさせ、NRMの展開を妨げている。
本研究では,NRMにおける有効・損耗トレードオフに関する理論的保証を確立する。
論文 参考訳(メタデータ) (2023-12-16T05:38:39Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Disentangled Text Representation Learning with Information-Theoretic
Perspective for Adversarial Robustness [17.5771010094384]
敵の脆弱性は信頼性の高いNLPシステムを構築する上で大きな障害である。
最近の研究は、モデルの敵意的な脆弱性は教師あり訓練における非破壊的な特徴によって引き起こされると主張している。
本稿では,不整合表現学習の観点から,敵対的課題に取り組む。
論文 参考訳(メタデータ) (2022-10-26T18:14:39Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。