論文の概要: Sim2Real SAR Image Restoration: Metadata-Driven Models for Joint Despeckling and Sidelobes Reduction
- arxiv url: http://arxiv.org/abs/2601.01541v1
- Date: Sun, 04 Jan 2026 14:32:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.472168
- Title: Sim2Real SAR Image Restoration: Metadata-Driven Models for Joint Despeckling and Sidelobes Reduction
- Title(参考訳): Sim2Real SAR画像復元: 関節脱種とサイドローブ低減のためのメタデータ駆動モデル
- Authors: Antoine De Paepe, Pascal Nguyen, Michael Mabelle, Cédric Saleun, Antoine Jouadé, Jean-Christophe Louvigne,
- Abstract要約: 本稿では,デスペックリングとサイドローブリダクションを共同で行う統合フレームワークを提案する。
次に、実際のSAR画像上で推論を行い、実(Sim2Real)転送可能性に対する効果的なシミュレーションを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic aperture radar (SAR) provides valuable information about the Earth's surface under all weather and illumination conditions. However, the inherent phenomenon of speckle and the presence of sidelobes around bright targets pose challenges for accurate interpretation of SAR imagery. Most existing SAR image restoration methods address despeckling and sidelobes reduction as separate tasks. In this paper, we propose a unified framework that jointly performs both tasks using neural networks (NNs) trained on a realistic SAR simulated dataset generated with MOCEM. Inference can then be performed on real SAR images, demonstrating effective simulation to real (Sim2Real) transferability. Additionally, we incorporate acquisition metadata as auxiliary input to the NNs, demonstrating improved restoration performance.
- Abstract(参考訳): 合成開口レーダー(SAR)は、すべての天候と照明条件下で地球の表面について貴重な情報を提供する。
しかし、スペックルに固有の現象や、明るいターゲットの周囲にサイドローブが存在することは、SAR画像の正確な解釈を困難にしている。
既存のSAR画像復元手法の多くは、切り離しとサイドローブの縮小を個別のタスクとして扱う。
本稿では,MOCEMで生成された現実的なSARシミュレーションデータセットに基づいてトレーニングされたニューラルネットワーク(NN)を用いて,両方のタスクを協調的に実行する統一フレームワークを提案する。
次に、実際のSAR画像上で推論を行い、実(Sim2Real)転送可能性に対する効果的なシミュレーションを示す。
さらに、NNの補助入力として取得メタデータを組み込み、復元性能の向上を示す。
関連論文リスト
- Dual-domain Adaptation Networks for Realistic Image Super-resolution [81.34345637776408]
現実画像超解像(SR)は、現実世界の低解像度(LR)画像を高解像度(HR)画像に変換することに焦点を当てている。
現在の手法は、限られた現実世界のLR-HRデータと競合し、基本的な画像特徴の学習に影響を及ぼす。
我々は、シミュレーションされた画像SRモデルを実世界のデータセットに効率よく適応できる新しいアプローチを提案する。
論文 参考訳(メタデータ) (2025-11-21T12:57:23Z) - Combining SAR Simulators to Train ATR Models with Synthetic Data [0.0]
本研究の目的は、SAR(Synthetic Aperture Radar)画像上で、ディープラーニングモデルをトレーニングして、自動ターゲット認識(ATR)を実行することである。
実測値の欠如を回避するため,SARシミュレータによる合成データを利用する。
本稿では,異なる(しかし相補的な)パラダイムに基づいて合成データセットを生成する2つのSARシミュレータを組み合わせることで,ATR問題に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2025-10-24T09:21:07Z) - Annotation-Free Open-Vocabulary Segmentation for Remote-Sensing Images [51.74614065919118]
本稿では,アノテーションのないRS画像のオープン語彙セグメンテーションのための最初のフレームワークであるSegEarth-OVを紹介する。
粗い特徴から高分解能空間の詳細を頑健に復元する普遍的なアップサンプラーであるSimFeatUpを提案する。
また、パッチ機能から固有のグローバルコンテキストを抽出するための、シンプルで効果的なグローバルバイアス緩和操作も提示する。
論文 参考訳(メタデータ) (2025-08-25T14:22:57Z) - Unsupervised Image Super-Resolution Reconstruction Based on Real-World Degradation Patterns [4.977925450373957]
超解像再構成モデルのトレーニングのための新しいTripleGANフレームワークを提案する。
このフレームワークは、LR観測から実世界の劣化パターンを学習し、対応する劣化特性を持つデータセットを合成する。
本手法は, 過スムーズなアーティファクトを伴わずに, 鋭い復元を維持しながら, 定量的な測定値に明らかな利点を示す。
論文 参考訳(メタデータ) (2025-06-20T14:24:48Z) - SAR-W-MixMAE: SAR Foundation Model Training Using Backscatter Power Weighting [3.618534280726541]
マスク付きオートエンコーダ(MAE)などの基礎モデルアプローチや、そのバリエーションが衛星画像に適用されている。
セマンティックラベリングによるデータセット作成の困難さと光学画像に対する高ノイズコンテントのため、SAR(Synthetic Aperture Radar)データは基礎モデルの分野ではあまり研究されていない。
本研究では,マスク付きオートエンコーダ,特にSentinel-1 SAR画像上のMixMAEとそのSAR画像分類タスクへの影響について検討した。
論文 参考訳(メタデータ) (2025-03-03T05:09:44Z) - Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks [0.0]
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与する。
その結果,解釈可能性が大きく向上し,EO画像に精通したアナリストがSARデータにアクセスしやすくなった。
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与し,データ解釈を向上するための新しいツールを提供する。
論文 参考訳(メタデータ) (2024-09-07T14:31:46Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
単一画像超解像(SISR)は、与えられた低解像度(LR)画像を高解像度(HR)にアップサンプリングすることを目的とした課題である。
近年のアプローチは、単純化されたダウンサンプリング演算子によって劣化したシミュレーションLR画像に基づいて訓練されている。
Invertible Scale-Conditional Function (ICF) を提案する。これは入力画像をスケールし、異なるスケール条件で元の入力を復元する。
論文 参考訳(メタデータ) (2023-07-24T12:42:45Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
そこで我々は,ブラインドSRに先立ってカーネルを曖昧にすることなく,再帰的な詳細構造代替最適化を実現する,有効かつカーネルフリーなネットワークDSSRを提案する。
DSSRでは、細部構造変調モジュール(DSMM)が構築され、画像の詳細と構造の相互作用と協調を利用する。
本手法は既存の手法に対して最先端の手法を実現する。
論文 参考訳(メタデータ) (2022-12-03T14:44:17Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。