論文の概要: Distributed Federated Learning by Alternating Periods of Training
- arxiv url: http://arxiv.org/abs/2601.01793v1
- Date: Mon, 05 Jan 2026 05:06:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.767926
- Title: Distributed Federated Learning by Alternating Periods of Training
- Title(参考訳): 交替学習による分散フェデレーション学習
- Authors: Shamik Bhattacharyya, Rachel Kalpana Kalaimani,
- Abstract要約: フェデレーション学習(Federated Learning)は、マシンラーニングに対するプライバシ重視のアプローチであり、モデルがローカルに利用可能なデータを持つクライアントデバイス上でトレーニングされ、中央サーバに集約される。
サーバ間通信機能を備えた複数サーバからなるフェデレーション学習のための分散学習手法を提案する。
そこで本研究では,クライアントデータ上でのローカルトレーニングとサーバ間のグローバルトレーニングを交互に行うDFL(Distributed Federated Learning)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a privacy-focused approach towards machine learning where models are trained on client devices with locally available data and aggregated at a central server. However, the dependence on a single central server is challenging in the case of a large number of clients and even poses the risk of a single point of failure. To address these critical limitations of scalability and fault-tolerance, we present a distributed approach to federated learning comprising multiple servers with inter-server communication capabilities. While providing a fully decentralized approach, the designed framework retains the core federated learning structure where each server is associated with a disjoint set of clients with server-client communication capabilities. We propose a novel DFL (Distributed Federated Learning) algorithm which uses alternating periods of local training on the client data followed by global training among servers. We show that the DFL algorithm, under a suitable choice of parameters, ensures that all the servers converge to a common model value within a small tolerance of the ideal model, thus exhibiting effective integration of local and global training models. Finally, we illustrate our theoretical claims through numerical simulations.
- Abstract(参考訳): フェデレーション学習(Federated Learning)は、マシンラーニングに対するプライバシ重視のアプローチであり、モデルがローカルに利用可能なデータを持つクライアントデバイス上でトレーニングされ、中央サーバに集約される。
しかし、多くのクライアントの場合、単一の中央サーバへの依存は困難であり、単一障害点のリスクさえも生じます。
このようなスケーラビリティとフォールトトレランスの限界に対処するため,サーバ間通信機能を備えた複数のサーバからなるフェデレーション学習のための分散アプローチを提案する。
完全に分散されたアプローチを提供する一方で、設計されたフレームワークは、各サーバがサーバ指向の通信機能を備えたクライアントの分離されたセットに関連付けられている、中核的なフェデレーション付き学習構造を保持します。
そこで本研究では,クライアントデータ上でのローカルトレーニングとサーバ間のグローバルトレーニングを交互に行うDFL(Distributed Federated Learning)アルゴリズムを提案する。
DFLアルゴリズムは、パラメータの適切な選択の下で、すべてのサーバが理想モデルの小さな許容範囲内で共通のモデル値に収束することを保証し、ローカルおよびグローバルなトレーニングモデルの効果的な統合を示す。
最後に, 数値シミュレーションによる理論的主張について述べる。
関連論文リスト
- TRAIL: Trust-Aware Client Scheduling for Semi-Decentralized Federated Learning [13.144501509175985]
本稿では、クライアントの状態とコントリビューションを評価するTRAILと呼ばれるTRust-Aware clIent scheduLing機構を提案する。
我々は、エッジサーバとクライアントが信頼できないクラスタ内モデルアグリゲーションとクラスタ間モデルコンセンサスを使用して、共有グローバルモデルをトレーニングする半分散FLフレームワークに焦点を当てる。
実世界のデータセットで行われた実験では、TRAILは最先端のベースラインを上回っ、テスト精度が8.7%向上し、トレーニング損失が15.3%減少した。
論文 参考訳(メタデータ) (2024-12-16T05:02:50Z) - FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [23.140777064095833]
フェデレーション学習は、分散クライアントがローカルデータを使用して機械学習モデルを協調的にトレーニングするためのフレームワークである。
分散環境のための効率的パーソナライズされたフェデレーション学習アルゴリズムであるFedSPDを提案する。
低接続性ネットワークにおいてもFedSPDが正確なモデルを学ぶことを示す。
論文 参考訳(メタデータ) (2024-10-24T15:48:34Z) - Scheduling and Communication Schemes for Decentralized Federated
Learning [0.31410859223862103]
勾配降下(SGD)アルゴリズムを用いた分散連合学習(DFL)モデルが導入された。
DFLの3つのスケジューリングポリシーがクライアントと並列サーバ間の通信のために提案されている。
その結果,提案した計画警察は,収束速度と最終グローバルモデルの両方に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2023-11-27T17:35:28Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
ディープラーニングは多くのコンピュータビジョンタスクで成功している。
しかし、プライバシー問題に対する意識の高まりは、特に人物の再識別(Re-ID)において、ディープラーニングに新たな課題をもたらす。
我々は,複数のプライバシ保護されたローカルモデル(ローカルクライアント)を同時に学習することにより,汎用的なグローバルモデル(中央サーバ)を構築するための,フェデレート・パーソナライゼーション(FedReID)と呼ばれる新しいパラダイムを提案する。
このクライアントサーバ共同学習プロセスは、プライバシコントロールの下で反復的に実行されるため、分散データを共有したり、収集したりすることなく、分散学習を実現することができる。
論文 参考訳(メタデータ) (2020-06-07T13:32:33Z) - Federated Residual Learning [53.77128418049985]
クライアントはローカルモデルを個別に訓練し、サーバ側で共有するモデルと共同で予測を行う。
この新しいフェデレートされた学習フレームワークを使用することで、統合トレーニングが提供するパフォーマンス上のメリットをすべて享受しながら、中央共有モデルの複雑さを最小限にすることができる。
論文 参考訳(メタデータ) (2020-03-28T19:55:24Z) - Coded Federated Learning [5.375775284252717]
フェデレートラーニング(Federated Learning)とは、クライアントデバイスに分散した分散データからグローバルモデルをトレーニングする手法である。
この結果から,CFLでは,符号化されていない手法に比べて,大域的モデルを約4倍の速度で収束させることができることがわかった。
論文 参考訳(メタデータ) (2020-02-21T23:06:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。