論文の概要: Agentic AI in Remote Sensing: Foundations, Taxonomy, and Emerging Systems
- arxiv url: http://arxiv.org/abs/2601.01891v1
- Date: Mon, 05 Jan 2026 08:34:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.861876
- Title: Agentic AI in Remote Sensing: Foundations, Taxonomy, and Emerging Systems
- Title(参考訳): リモートセンシングにおけるエージェントAI - 基礎, 分類, 新興システム
- Authors: Niloufar Alipour Talemi, Julia Boone, Fatemeh Afghah,
- Abstract要約: この調査は、リモートセンシングにおけるエージェントAIの総合的なレビューである。
単一エージェントのコピロとマルチエージェントのシステムを区別した統合分類を導入する。
評価を画素レベルの精度から軌跡認識推論の正確性に移行する新しいベンチマークをレビューする。
- 参考スコア(独自算出の注目度): 9.388162021920206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paradigm of Earth Observation analysis is shifting from static deep learning models to autonomous agentic AI. Although recent vision foundation models and multimodal large language models advance representation learning, they often lack the sequential planning and active tool orchestration required for complex geospatial workflows. This survey presents the first comprehensive review of agentic AI in remote sensing. We introduce a unified taxonomy distinguishing between single-agent copilots and multi-agent systems while analyzing architectural foundations such as planning mechanisms, retrieval-augmented generation, and memory structures. Furthermore, we review emerging benchmarks that move the evaluation from pixel-level accuracy to trajectory-aware reasoning correctness. By critically examining limitations in grounding, safety, and orchestration, this work outlines a strategic roadmap for the development of robust, autonomous geospatial intelligence.
- Abstract(参考訳): 地球観測分析のパラダイムは、静的ディープラーニングモデルから自律エージェントAIへとシフトしている。
最近のビジョンファウンデーションモデルとマルチモーダルな大規模言語モデルは表現学習を前進させるが、複雑な地理空間ワークフローに必要な逐次計画とアクティブなツールオーケストレーションを欠いていることが多い。
この調査は、リモートセンシングにおけるエージェントAIの総合的なレビューである。
本研究では,単一エージェントとマルチエージェントシステムとを区別する統一分類法を導入し,計画機構,検索拡張生成,メモリ構造などのアーキテクチャ基盤を解析する。
さらに,評価を画素レベルの精度から軌跡認識推論の正確性に移行する新しいベンチマークについて検討する。
この研究は、接地、安全、オーケストレーションの限界を批判的に検証することで、堅牢で自律的な地理空間知能の開発のための戦略的ロードマップを概説する。
関連論文リスト
- Forging Spatial Intelligence: A Roadmap of Multi-Modal Data Pre-Training for Autonomous Systems [75.78934957242403]
自動運転車とドローンは、マルチモーダル搭載センサーデータから真の空間情報を必要とする。
本稿では,この目標に向かって進む中核的な技術群を同定し,マルチモーダル・プレトレーニングのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2025-12-30T17:58:01Z) - Towards 6G Native-AI Edge Networks: A Semantic-Aware and Agentic Intelligence Paradigm [85.7583231789615]
6Gはインテリジェンスをネイティブネットワークの能力として位置づけ、無線アクセスネットワーク(RAN)の設計を変革する
このビジョンの中では、セマンティック・ネイティブのコミュニケーションとエージェント・インテリジェンスが中心的な役割を果たすことが期待されている。
エージェントインテリジェンスは、RANエンティティに目標駆動の自律性、推論、計画、マルチエージェントコラボレーションを提供する。
論文 参考訳(メタデータ) (2025-12-04T03:09:33Z) - Beyond Pipelines: A Survey of the Paradigm Shift toward Model-Native Agentic AI [27.209787026732972]
エージェントAIの急速な進化は、人工知能の新しいフェーズを象徴している。
この調査はエージェントAI構築におけるパラダイムシフトをトレースする。
それぞれの能力が外部スクリプトモジュールからエンドツーエンドの学習行動へとどのように進化したかを調べる。
論文 参考訳(メタデータ) (2025-10-19T05:23:43Z) - A Comprehensive Review of AI Agents: Transforming Possibilities in Technology and Beyond [3.96715377510494]
Reviewは、次世代のAIエージェントシステムを、より堅牢で適応性があり、信頼できる自律的知性へと導くことを目指している。
認知科学に触発されたモデル、階層的強化学習フレームワーク、および大規模言語モデルに基づく推論から洞察を合成する。
我々は、これらのエージェントを現実世界のシナリオに展開する際の倫理的、安全性、解釈可能性に関する懸念について論じる。
論文 参考訳(メタデータ) (2025-08-16T07:38:45Z) - A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems [53.37728204835912]
既存のAIシステムは、デプロイ後も静的な手作業による構成に依存している。
近年,インタラクションデータと環境フィードバックに基づいてエージェントシステムを自動拡張するエージェント進化手法が研究されている。
この調査は、自己進化型AIエージェントの体系的な理解を研究者や実践者に提供することを目的としている。
論文 参考訳(メタデータ) (2025-08-10T16:07:32Z) - Deep Research Agents: A Systematic Examination And Roadmap [109.53237992384872]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [3.7414278978078204]
このレビューは、AIエージェントとエージェントAIを批判的に区別し、構造化された概念分類、アプリケーションマッピング、そして、異なる設計哲学と能力を明らかにするための機会と課題の分析を提供する。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。