論文の概要: Automatic Assertion Mining in Assertion-Based Verification: Techniques, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2601.02248v1
- Date: Mon, 05 Jan 2026 16:30:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:23.273026
- Title: Automatic Assertion Mining in Assertion-Based Verification: Techniques, Challenges, and Future Directions
- Title(参考訳): Assertion-Based Verificationにおける自動Assertion Mining:技術,課題,今後の方向性
- Authors: Mohammad Reza Heidari Iman, Giorgio Di Natale, Katell Morin-Allory,
- Abstract要約: 本稿では,最新の,先進的で広く採用されているアサーション・マイナーについて概説し,それらの方法論の比較分析を行った。
目標は、既存の鉱山労働者の能力と限界に関する洞察を研究者や検証実践者に与えることである。
- 参考スコア(独自算出の注目度): 0.3823356975862005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional verification increasingly relies on Assertion-Based Verification (ABV), which has become a key approach for verifying hardware designs due to its efficiency and effectiveness. Central to ABV are automatic assertion miners, which apply different techniques to generate assertions automatically. This paper reviews the most recent, advanced, and widely adopted assertion miners, offering a comparative analysis of their methodologies. The goal is to provide researchers and verification practitioners with insights into the capabilities and limitations of existing miners. By identifying their shortcomings, this work also points toward directions for developing more powerful and advanced assertion miners in the future.
- Abstract(参考訳): 機能検証は、Assertion-Based Verification (ABV) にますます依存しており、その効率性と有効性からハードウェア設計を検証するための重要なアプローチとなっている。
ABVの中心は自動アサーションマイニングであり、アサーションの自動生成に異なる技術を適用する。
本稿では,最新の,先進的で広く採用されているアサーション・マイナーについて概説し,それらの方法論の比較分析を行った。
目標は、既存の鉱山労働者の能力と限界に関する洞察を研究者や検証実践者に与えることである。
それらの欠点を特定することで、この研究は将来より強力で先進的なアサーション・マイナーを開発するための方向性も指している。
関連論文リスト
- Towards Reliable Forgetting: A Survey on Machine Unlearning Verification [26.88376128769619]
本稿では,機械学習の検証手法に関する最初の構造化された調査について述べる。
本稿では,現在の手法を行動検証とパラメトリック検証の2つの主要なカテゴリに分類する分類法を提案する。
基礎となる仮定、強度、限界を調べ、実践的なデプロイメントにおける潜在的な脆弱性を特定します。
論文 参考訳(メタデータ) (2025-06-18T03:33:59Z) - General Scales Unlock AI Evaluation with Explanatory and Predictive Power [57.7995945974989]
ベンチマークはAIの進歩を導くものだが、汎用AIシステムには限られた説明力と予測力を提供している。
私たちは、一般的なAIベンチマークが実際に何を計測しているかを説明することができる、AI評価のための一般的な尺度を紹介します。
私たちの完全に自動化された方法論は、飽和しない一般的なスケールにインスタンス要求を配置する18の新しく作られたルーリックの上に構築されます。
論文 参考訳(メタデータ) (2025-03-09T01:13:56Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - PentestAgent: Incorporating LLM Agents to Automated Penetration Testing [6.815381197173165]
手動浸透試験は時間と費用がかかる。
大規模言語モデル(LLM)の最近の進歩は、浸透テストを強化する新たな機会を提供する。
我々は,新しいLLMベースの自動浸透試験フレームワークであるPentestAgentを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:10:39Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation [6.3585378855805725]
本稿では,アサーション生成におけるLarge-Language Modelsの有効性を評価するための新しいベンチマークを提案する。
AssertioBenchにはOpenCoresから100のキュレートされたVerilogハードウェア設計が含まれており、GoldMineとHARMから生成された各設計について正式に承認されている。
論文 参考訳(メタデータ) (2024-06-26T14:47:28Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Explainable Authorship Identification in Cultural Heritage Applications:
Analysis of a New Perspective [48.031678295495574]
既存の汎用eXplainable Artificial Intelligence(XAI)技術のAIへの応用について検討する。
特に,3種類のAIdタスクにおける3種類のXAIテクニックの相対的メリットを評価した。
我々の分析によると、これらの技術は、説明可能なオーサシップの特定に向けて重要な第一歩を踏み出すが、まだ多くの作業が続けられている。
論文 参考訳(メタデータ) (2023-11-03T20:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。