論文の概要: Don't Mind the Gaps: Implicit Neural Representations for Resolution-Agnostic Retinal OCT Analysis
- arxiv url: http://arxiv.org/abs/2601.02447v1
- Date: Mon, 05 Jan 2026 15:41:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.677956
- Title: Don't Mind the Gaps: Implicit Neural Representations for Resolution-Agnostic Retinal OCT Analysis
- Title(参考訳): ギャップを気にするな:分解能非依存型網膜OCT解析のための暗黙の神経表現
- Authors: Bennet Kahrs, Julia Andresen, Fenja Falta, Monty Santarossa, Heinz Handels, Timo Kepp,
- Abstract要約: Inlicit Neural representations (INRs) は、ボキセル化データを連続的な表現として保存するツールとして登場した。
網膜CTボリュームの高密度3次元解析にINRの特性を利用する2つのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.0093567618205226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Routine clinical imaging of the retina using optical coherence tomography (OCT) is performed with large slice spacing, resulting in highly anisotropic images and a sparsely scanned retina. Most learning-based methods circumvent the problems arising from the anisotropy by using 2D approaches rather than performing volumetric analyses. These approaches inherently bear the risk of generating inconsistent results for neighboring B-scans. For example, 2D retinal layer segmentations can have irregular surfaces in 3D. Furthermore, the typically used convolutional neural networks are bound to the resolution of the training data, which prevents their usage for images acquired with a different imaging protocol. Implicit neural representations (INRs) have recently emerged as a tool to store voxelized data as a continuous representation. Using coordinates as input, INRs are resolution-agnostic, which allows them to be applied to anisotropic data. In this paper, we propose two frameworks that make use of this characteristic of INRs for dense 3D analyses of retinal OCT volumes. 1) We perform inter-B-scan interpolation by incorporating additional information from en-face modalities, that help retain relevant structures between B-scans. 2) We create a resolution-agnostic retinal atlas that enables general analysis without strict requirements for the data. Both methods leverage generalizable INRs, improving retinal shape representation through population-based training and allowing predictions for unseen cases. Our resolution-independent frameworks facilitate the analysis of OCT images with large B-scan distances, opening up possibilities for the volumetric evaluation of retinal structures and pathologies.
- Abstract(参考訳): 光コヒーレンス・トモグラフィー(OCT)による網膜の経時的臨床像は、大きなスライス間隔で行われ、高い異方性像と軽度にスキャンされた網膜を呈する。
学習に基づくほとんどの手法は、体積解析を行うのではなく、2次元アプローチを用いて異方性から生じる問題を回避している。
これらのアプローチは本質的に、近隣のBスキャンに対して一貫性のない結果をもたらすリスクを負っている。
例えば、2D網膜層のセグメンテーションは3Dで不規則な表面を持つ。
さらに、一般的に使用される畳み込みニューラルネットワークは、トレーニングデータの解像度に縛られ、異なるイメージングプロトコルで取得した画像に対する使用を防止する。
Inlicit Neural representations (INRs) は、最近、連続的な表現としてボキセル化データを格納するツールとして登場した。
座標を入力として使用すると、INRは分解能に依存しないため、異方性データに適用することができる。
本稿では、網膜CTボリュームの高密度3次元解析にINRの特性を利用する2つのフレームワークを提案する。
1)Bスキャン間の関係構造を維持するために,Bスキャン間の補間を行う。
2) 解像度に依存しない網膜アトラスを作製し, データの厳密な要求を伴わず, 一般的な解析を可能にする。
どちらの手法も一般化可能なINRを活用し、人口ベーストレーニングによる網膜形状の表現を改善し、目に見えない症例の予測を可能にする。
我々の解像度非依存のフレームワークは、大きなBスキャン距離を持つOCT画像の解析を容易にし、網膜構造と病理の体積的評価の可能性を開く。
関連論文リスト
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors [4.2663199451998475]
網膜層セグメンテーションタスクに半教師付きパラダイムを導入する。
特に、表面位置回帰をピクセル単位で構造化されたセグメンテーションに変換するために、新しい完全微分可能なアプローチが用いられる。
並行して,ラベル付きデータの限られた量が利用できる場合に,ネットワークトレーニングを改善するための解剖学的事前セットを提案する。
論文 参考訳(メタデータ) (2022-07-01T14:30:59Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retina OCT Images [33.99874168018807]
本研究では,ハイブリッド2D-3D畳み込みニューラルネットワーク(CNN)を用いた新しいフレームワークを提案し,OCTから連続した3次元網膜層表面を得る。
本フレームワークは, 層分割精度とクロスBスキャン3D連続性の両方の観点から, 最先端の2D手法よりも優れた結果が得られる。
論文 参考訳(メタデータ) (2022-03-04T15:55:09Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
網膜層厚の同定は、患者ごとに個別に行う重要な課題である。
自動セグメンテーションモデルの構築は,医用画像処理分野において重要な課題となっている。
我々は、秩序に制約された3D OCT網膜細胞層セグメンテーションのための新しい、純粋にデータ駆動型テキスト幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2020-09-10T01:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。