論文の概要: CT Scans As Video: Efficient Intracranial Hemorrhage Detection Using Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2601.02521v1
- Date: Mon, 05 Jan 2026 19:49:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.712819
- Title: CT Scans As Video: Efficient Intracranial Hemorrhage Detection Using Multi-Object Tracking
- Title(参考訳): ビデオとしてのCTスキャン:多目的追跡による頭蓋内出血の効率的な検出
- Authors: Amirreza Parvahan, Mohammad Hoseyni, Javad Khoramdel, Amirhossein Nikoofard,
- Abstract要約: 本稿では,2次元検出の効率と3次元コンテキストの必要性を両立させる軽量コンピュータビジョンフレームワークを開発する。
計算コストのごく一部で3Dコンテキスト推論を近似することにより,リアルタイム患者優先化のためのスケーラブルなソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.9332987715848716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated analysis of volumetric medical imaging on edge devices is severely constrained by the high memory and computational demands of 3D Convolutional Neural Networks (CNNs). This paper develops a lightweight computer vision framework that reconciles the efficiency of 2D detection with the necessity of 3D context by reformulating volumetric Computer Tomography (CT) data as sequential video streams. This video-viewpoint paradigm is applied to the time-sensitive task of Intracranial Hemorrhage (ICH) detection using the Hemorica dataset. To ensure operational efficiency, we benchmarked multiple generations of the YOLO architecture (v8, v10, v11 and v12) in their Nano configurations, selecting the version with the highest mAP@50 to serve as the slice-level backbone. A ByteTrack algorithm is then introduced to enforce anatomical consistency across the $z$-axis. To address the initialization lag inherent in video trackers, a hybrid inference strategy and a spatiotemporal consistency filter are proposed to distinguish true pathology from transient prediction noise. Experimental results on independent test data demonstrate that the proposed framework serves as a rigorous temporal validator, increasing detection Precision from 0.703 to 0.779 compared to the baseline 2D detector, while maintaining high sensitivity. By approximating 3D contextual reasoning at a fraction of the computational cost, this method provides a scalable solution for real-time patient prioritization in resource-constrained environments, such as mobile stroke units and IoT-enabled remote clinics.
- Abstract(参考訳): エッジデバイスにおけるボリューム医療画像の自動解析は,3次元畳み込みニューラルネットワーク(CNN)の高メモリと計算要求に強く制約されている。
本稿では,CTデータを逐次的ビデオストリームとして再構成することにより,2次元検出の効率性と3次元コンテキストの必要性を両立させる軽量なコンピュータビジョンフレームワークを開発する。
このビデオ視点のパラダイムは、Hemoricaデータセットを用いた頭蓋内出血(ICH)検出の時間依存性タスクに適用される。
運用効率を確保するため、私たちはNano構成で複数の世代のYOLOアーキテクチャ(v8、v10、v11、v12)をベンチマークし、スライスレベルのバックボーンとして最も高いmAP@50でバージョンを選択しました。
その後、ByteTrackアルゴリズムを導入し、$z$-axの解剖学的一貫性を強制する。
ビデオトラッカーに固有の初期化遅延に対処するために,過渡予測ノイズと真の病理を区別するために,ハイブリッド推論戦略と時空間整合性フィルタを提案する。
独立試験データを用いた実験結果から, 本フレームワークは高感度で検出精度が0.703から0.779に向上し, 高い感度を維持した。
計算コストのごく一部で3Dコンテキスト推論を近似することにより、モバイルストロークユニットやIoT対応遠隔クリニックなどのリソース制約のある環境において、リアルタイムの患者優先化を実現するスケーラブルなソリューションを提供する。
関連論文リスト
- Accelerating 3D Photoacoustic Computed Tomography with End-to-End Physics-Aware Neural Operators [74.65171736966131]
光音響計算トモグラフィ(PACT)は、光コントラストと超音波分解能を組み合わせることで、光拡散限界を超える深部像を実現する。
現在の実装では、高密度トランスデューサアレイと長い取得時間を必要とし、臨床翻訳を制限している。
本研究では,センサ計測からボリューム再構成まで,逆音響マッピングを直接学習する物理認識モデルであるPanoを紹介する。
論文 参考訳(メタデータ) (2025-09-11T23:12:55Z) - Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
現在の異常検出法は, 基準産業データより優れているが, 「正常」 と「異常」の定義の相違により, 医療データに苦慮している。
我々は,ImageNet上で事前学習し,MRIデータセットを2次元スライス特徴抽出器として微調整したモデルを用いたSimple Slice-based Network (SimpleSliceNet) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-28T17:20:56Z) - 2D and 3D Deep Learning Models for MRI-based Parkinson's Disease Classification: A Comparative Analysis of Convolutional Kolmogorov-Arnold Networks, Convolutional Neural Networks, and Graph Convolutional Networks [0.0]
本研究はパーキンソン病の診断にConvolutional Kolmogorov-Arnold Networks(ConvKANs)を適用した。
ConvKANは、構造MRIを用いたPD分類のために、学習可能なアクティベーション機能を畳み込み層に統合する。
医用画像用ConvKANの最初の3D実装について紹介し、その性能を畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCN)と比較した。
これらの知見は, PD検出に対するConvKANsの可能性を強調し, 脳の微妙な変化を捉える上での3D解析の重要性を強調し, データセット間の一般化の課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-07-24T16:04:18Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
RSNA頭蓋内出血検出のためのシステムについて紹介する。
提案システムは,畳み込みニューラルネットワーク(CNN)を用いた軽量深層ニューラルネットワークアーキテクチャに基づいている。
最終テストセットの重み付き平均ログ損失は0.04989で、合計1345名から上位30名(2%)にランクインした。
論文 参考訳(メタデータ) (2020-08-01T17:28:25Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3次元畳み込みニューラルネットワーク(CNN)は、単一のOCT画像を用いたマーカーオブジェクトのポーズ推定に有望な性能を示した。
我々は3次元CNNを4次元時間CNNに拡張し、マーカーオブジェクト追跡のための追加の時間情報の影響を評価する。
論文 参考訳(メタデータ) (2020-07-02T12:02:20Z) - Volumetric landmark detection with a multi-scale shift equivariant
neural network [16.114319747246334]
本稿では,3次元画像における高速かつメモリ効率の高いランドマーク検出を実現するマルチスケールのエンドツーエンドディープラーニング手法を提案する。
今回我々は,263個のCT上における頸動脈分岐検出法について検討し,平均ユークリッド距離2.81mmで最先端の精度を実現した。
論文 参考訳(メタデータ) (2020-03-03T17:06:19Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。