論文の概要: SimpleMem: Efficient Lifelong Memory for LLM Agents
- arxiv url: http://arxiv.org/abs/2601.02553v1
- Date: Mon, 05 Jan 2026 21:02:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.722271
- Title: SimpleMem: Efficient Lifelong Memory for LLM Agents
- Title(参考訳): SimpleMem: LLMエージェントの効率的な寿命記憶
- Authors: Jiaqi Liu, Yaofeng Su, Peng Xia, Siwei Han, Zeyu Zheng, Cihang Xie, Mingyu Ding, Huaxiu Yao,
- Abstract要約: セマンティックロスレス圧縮に基づく効率的なメモリフレームワークSimpleMemを紹介する。
本稿では,情報密度とトークン利用量の最大化を目的とした3段階パイプラインを提案する。
ベンチマークデータセットを用いた実験により,提案手法は精度,検索効率,推論コストにおいて,ベースラインアプローチを一貫して上回っていることがわかった。
- 参考スコア(独自算出の注目度): 73.74399447715052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To support reliable long-term interaction in complex environments, LLM agents require memory systems that efficiently manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) \textit{Semantic Structured Compression}, which applies entropy-aware filtering to distill unstructured interactions into compact, multi-view indexed memory units; (2) \textit{Recursive Memory Consolidation}, an asynchronous process that integrates related units into higher-level abstract representations to reduce redundancy; and (3) \textit{Adaptive Query-Aware Retrieval}, which dynamically adjusts retrieval scope based on query complexity to construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.
- Abstract(参考訳): 複雑な環境での信頼性の高い長期的相互作用をサポートするため、LLMエージェントは歴史的経験を効率的に管理するメモリシステムを必要とする。
既存のアプローチは、受動的コンテキスト拡張による完全なインタラクション履歴を保持し、かなりの冗長性をもたらすか、あるいはノイズをフィルタリングするために反復的推論に依存し、高いトークンコストを発生させる。
この課題に対処するために,意味的ロスレス圧縮に基づく効率的なメモリフレームワークSimpleMemを紹介する。
情報密度とトークン利用を最大化するために設計された3段階のパイプラインを提案する。(1) エントロピー対応のフィルタを用いて、非構造的相互作用をコンパクトな多視点インデックスメモリ単位に蒸留する(2) 関連ユニットを高レベルな抽象表現に統合して冗長性を低減するための非同期プロセスである(2) (3) クエリ複雑性に基づいて動的に検索範囲を調整し、コンテキストを効率的に構築する。
ベンチマークデータセットを用いた実験により,提案手法は精度,検索効率,推論コストのベースラインアプローチを一貫して上回り,平均F1改善率26.4%を達成し,推論時のトークン消費量を最大30倍に削減し,性能と効率のバランスが良好であることが示された。
コードはhttps://github.com/aiming-lab/SimpleMem.comで入手できる。
関連論文リスト
- CREAM: Continual Retrieval on Dynamic Streaming Corpora with Adaptive Soft Memory [19.64051996386645]
CREAMは、メモリベースの連続検索のための自己教師型フレームワークである。
教師なしの環境では、目に見えないトピックと見えないトピックの両方に適応します。
2つのベンチマークデータセットの実験は、CREAMが優れた適応性と精度を示すことを示した。
論文 参考訳(メタデータ) (2026-01-06T04:47:49Z) - MemSearcher: Training LLMs to Reason, Search and Manage Memory via End-to-End Reinforcement Learning [73.27233666920618]
本稿では,メモリを反復的に保持し,現在のターンと組み合わせたエージェントワークフローであるMemSearcherを提案する。
それぞれのターンで、MemSearcherはユーザーの質問をメモリに融合させ、推論トレースを生成し、検索アクションを実行し、メモリを更新してタスクの解決に必要な情報のみを保持する。
我々は,MemSearcher Agents の推論,検索戦略,メモリ管理を協調的に最適化する,エンドツーエンドの RL フレームワークである Multi-context GRPO を紹介する。
論文 参考訳(メタデータ) (2025-11-04T18:27:39Z) - CAM: A Constructivist View of Agentic Memory for LLM-Based Reading Comprehension [55.29309306566238]
現在のLarge Language Models (LLM) は、長文文書を解釈する際に圧倒的な情報量に直面している。
この課題は、バニラLSMを自律的な読み出しエージェントに高めることができる凝集性メモリモジュールの必須性を高める。
我々はジャン・ピアジェの構成主義理論(Constructivist Theory)からインスピレーションを得て、エージェントメモリの3つの特性(構造化スキーマ、フレキシブルな同化、動的調節)を表現した。
論文 参考訳(メタデータ) (2025-10-07T02:16:30Z) - MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents [84.62985963113245]
我々は,長時間のマルチターンタスクに対して,エージェントが一定のメモリで動作可能な,エンドツーエンドの強化学習フレームワークMEM1を紹介する。
各ターンでMEM1は、メモリ統合と推論を共同でサポートするコンパクトな共有内部状態を更新する。
その結果,MEM1-7Bは16目的のマルチホップQAタスクにおいて,Qwen2.5-14B-Instructと比較してメモリ使用量を3.7倍削減し,3.5倍の性能向上を示す。
論文 参考訳(メタデータ) (2025-06-18T19:44:46Z) - Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers [58.98923344096319]
REFORMは、2フェーズアプローチによって、長いコンテキストを効率的に処理する新しい推論フレームワークである。
RULERとBABILongでそれぞれ1Mコンテキスト長で50%以上と27%のパフォーマンス向上を達成した。
また、Infinite-BenchとMM-NIAHのベースラインを上回り、さまざまなタスクやドメインの柔軟性を示す。
論文 参考訳(メタデータ) (2025-06-01T23:49:14Z) - ZSMerge: Zero-Shot KV Cache Compression for Memory-Efficient Long-Context LLMs [15.76582272387931]
本稿では,効率的なキャッシュ管理のための動的KVキャッシュ圧縮フレームワークZSMergeを提案する。
ZSMergeはメモリ効率と推論速度を無視可能な性能劣化で著しく向上させる。
論文 参考訳(メタデータ) (2025-03-13T03:36:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。