論文の概要: The Path Ahead for Agentic AI: Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2601.02749v1
- Date: Tue, 06 Jan 2026 06:31:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.828726
- Title: The Path Ahead for Agentic AI: Challenges and Opportunities
- Title(参考訳): エージェントAIの道 - 挑戦と機会
- Authors: Nadia Sibai, Yara Ahmed, Serry Sibaee, Sawsan AlHalawani, Adel Ammar, Wadii Boulila,
- Abstract要約: この章では、複雑な環境で自律的に動作するエージェントAIシステムの出現について考察する。
我々は、統計モデルからトランスフォーマーベースのシステムへのアーキテクチャの進歩を辿り、エージェントの振る舞いを可能にする能力を識別する。
既存の調査とは異なり、私たちは、言語理解から自律的な行動へのアーキテクチャの移行に注目し、デプロイ前に解決しなければならない技術的ギャップを強調します。
- 参考スコア(独自算出の注目度): 4.52683540940001
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The evolution of Large Language Models (LLMs) from passive text generators to autonomous, goal-driven systems represents a fundamental shift in artificial intelligence. This chapter examines the emergence of agentic AI systems that integrate planning, memory, tool use, and iterative reasoning to operate autonomously in complex environments. We trace the architectural progression from statistical models to transformer-based systems, identifying capabilities that enable agentic behavior: long-range reasoning, contextual awareness, and adaptive decision-making. The chapter provides three contributions: (1) a synthesis of how LLM capabilities extend toward agency through reasoning-action-reflection loops; (2) an integrative framework describing core components perception, memory, planning, and tool execution that bridge LLMs with autonomous behavior; (3) a critical assessment of applications and persistent challenges in safety, alignment, reliability, and sustainability. Unlike existing surveys, we focus on the architectural transition from language understanding to autonomous action, emphasizing the technical gaps that must be resolved before deployment. We identify critical research priorities, including verifiable planning, scalable multi-agent coordination, persistent memory architectures, and governance frameworks. Responsible advancement requires simultaneous progress in technical robustness, interpretability, and ethical safeguards to realize potential while mitigating risks of misalignment and unintended consequences.
- Abstract(参考訳): 受動的テキストジェネレータから自律的目標駆動システムへの大規模言語モデル(LLM)の進化は、人工知能の根本的な変化を表している。
この章では、複雑な環境で自律的に動作するための計画、メモリ、ツールの使用、反復推論を統合するエージェントAIシステムの出現について検討する。
我々は、統計的モデルからトランスフォーマーベースのシステムへのアーキテクチャの進歩をトレースし、長距離推論、文脈認識、適応的意思決定といったエージェント的行動を可能にする能力を識別する。
この章は、(1)推論・行動・反射ループを通してLCM機能をエージェンシーにどのように拡張するかの合成、(2)LLMを自律的行動でブリッジするコアコンポーネントの知覚、記憶、計画、ツール実行を記述する統合的フレームワーク、(3)安全性、アライメント、信頼性、持続可能性におけるアプリケーションの批判的評価、といった3つの貢献を提供する。
既存の調査とは異なり、私たちは、言語理解から自律的な行動へのアーキテクチャの移行に注目し、デプロイ前に解決しなければならない技術的ギャップを強調します。
検証可能な計画、スケーラブルなマルチエージェント調整、永続的なメモリアーキテクチャ、ガバナンスフレームワークなど、重要な研究の優先順位を特定します。
責任ある進歩には、技術的堅牢性、解釈可能性、倫理的保護の同時進行が必要であり、誤認や意図しない結果のリスクを軽減しつつ潜在能力を実現する必要がある。
関連論文リスト
- Towards Responsible and Explainable AI Agents with Consensus-Driven Reasoning [4.226647687395254]
本稿では,多モデルコンセンサスと推論層ガバナンスに基づく実運用レベルのエージェントのためのResponsible(RAI)およびExplainable(XAI)AIエージェントアーキテクチャを提案する。
提案した設計では、異種LLMとVLMエージェントのコンソーシアムが独立して、共有入力コンテキストから候補出力を生成する。
専用の推論エージェントは、これらのアウトプットをまたいで構造化された統合を行い、安全と政策の制約を強制し、幻覚と偏見を緩和し、監査可能な証拠に基づく決定を生成する。
論文 参考訳(メタデータ) (2025-12-25T14:49:25Z) - AI Deception: Risks, Dynamics, and Controls [153.71048309527225]
このプロジェクトは、AI偽装分野の包括的で最新の概要を提供する。
我々は、動物の偽装の研究からシグナル伝達理論に基づく、AI偽装の正式な定義を同定する。
我々は,AI偽装研究の展望を,偽装発生と偽装処理の2つの主要な構成要素からなる偽装サイクルとして整理する。
論文 参考訳(メタデータ) (2025-11-27T16:56:04Z) - Fundamentals of Building Autonomous LLM Agents [64.39018305018904]
本稿では,大規模言語モデル(LLM)を用いたエージェントのアーキテクチャと実装手法について概説する。
この研究は、複雑なタスクを自動化し、人間の能力でパフォーマンスのギャップを埋めることのできる「アジェンティック」なLLMを開発するためのパターンを探求することを目的としている。
論文 参考訳(メタデータ) (2025-10-10T10:32:39Z) - A Comprehensive Review of AI Agents: Transforming Possibilities in Technology and Beyond [3.96715377510494]
Reviewは、次世代のAIエージェントシステムを、より堅牢で適応性があり、信頼できる自律的知性へと導くことを目指している。
認知科学に触発されたモデル、階層的強化学習フレームワーク、および大規模言語モデルに基づく推論から洞察を合成する。
我々は、これらのエージェントを現実世界のシナリオに展開する際の倫理的、安全性、解釈可能性に関する懸念について論じる。
論文 参考訳(メタデータ) (2025-08-16T07:38:45Z) - A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
大きな言語モデル(LLM)は強力な能力を示しているが、基本的に静的である。
LLMはますますオープンでインタラクティブな環境にデプロイされているため、この静的な性質は重要なボトルネックとなっている。
この調査は、自己進化エージェントの体系的で包括的なレビューを初めて提供する。
論文 参考訳(メタデータ) (2025-07-28T17:59:05Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [3.7414278978078204]
このレビューは、AIエージェントとエージェントAIを批判的に区別し、構造化された概念分類、アプリケーションマッピング、そして、異なる設計哲学と能力を明らかにするための機会と課題の分析を提供する。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
大規模言語モデル(LLM)は、従来の対話システムから、自律的な行動、文脈認識、ユーザとのマルチターンインタラクションが可能な高度なエージェントへと、会話AIを推進してきた。
本調査では,人間レベルの知性にアプローチするよりスケーラブルなシステムにおいて,何が達成されたのか,どのような課題が持続するのか,何を行う必要があるのか,といった,次世代の会話エージェントのデシラトゥムを提示する。
論文 参考訳(メタデータ) (2025-04-07T21:01:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。