論文の概要: MFC-RFNet: A Multi-scale Guided Rectified Flow Network for Radar Sequence Prediction
- arxiv url: http://arxiv.org/abs/2601.03633v1
- Date: Wed, 07 Jan 2026 06:24:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-08 18:12:46.141136
- Title: MFC-RFNet: A Multi-scale Guided Rectified Flow Network for Radar Sequence Prediction
- Title(参考訳): MFC-RFNet:レーダシーケンス予測のためのマルチスケール誘導整流回路
- Authors: Wenjie Luo, Chuanhu Deng, Chaorong Li, Rongyao Deng, Qiang Yang,
- Abstract要約: レーダエコーシークエンスからの正確な高分解能降水は、災害軽減と経済計画に不可欠である。
鍵となる課題は、複雑なマルチスケール進化のモデル化、変位に起因するフレーム間特徴の不整合、長距離コンテキストの効率的なキャプチャである。
本稿では,MFRF-Net(Multiscale Feature Communication Rectified Flow Network)を提案する。
- 参考スコア(独自算出の注目度): 7.015114232190396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and high-resolution precipitation nowcasting from radar echo sequences is crucial for disaster mitigation and economic planning, yet it remains a significant challenge. Key difficulties include modeling complex multi-scale evolution, correcting inter-frame feature misalignment caused by displacement, and efficiently capturing long-range spatiotemporal context without sacrificing spatial fidelity. To address these issues, we present the Multi-scale Feature Communication Rectified Flow (RF) Network (MFC-RFNet), a generative framework that integrates multi-scale communication with guided feature fusion. To enhance multi-scale fusion while retaining fine detail, a Wavelet-Guided Skip Connection (WGSC) preserves high-frequency components, and a Feature Communication Module (FCM) promotes bidirectional cross-scale interaction. To correct inter-frame displacement, a Condition-Guided Spatial Transform Fusion (CGSTF) learns spatial transforms from conditioning echoes to align shallow features. The backbone adopts rectified flow training to learn near-linear probability-flow trajectories, enabling few-step sampling with stable fidelity. Additionally, lightweight Vision-RWKV (RWKV) blocks are placed at the encoder tail, the bottleneck, and the first decoder layer to capture long-range spatiotemporal dependencies at low spatial resolutions with moderate compute. Evaluations on four public datasets (SEVIR, MeteoNet, Shanghai, and CIKM) demonstrate consistent improvements over strong baselines, yielding clearer echo morphology at higher rain-rate thresholds and sustained skill at longer lead times. These results suggest that the proposed synergy of RF training with scale-aware communication, spatial alignment, and frequency-aware fusion presents an effective and robust approach for radar-based nowcasting.
- Abstract(参考訳): レーダエコーシークエンスからの正確な高分解能降水は、災害の緩和と経済計画に不可欠であるが、それでも重要な課題である。
鍵となる課題は、複雑なマルチスケールの進化のモデル化、変位に起因するフレーム間特徴の不一致の修正、空間的忠実さを犠牲にすることなく、時間空間の長期的文脈を効率的に捉えることである。
これらの課題に対処するため,マルチスケール・フィーチャー・コミュニケーション・リクティファイド・フロー・ネットワーク(MFC-RFNet)を提案する。
細部を保ちながらマルチスケール融合を強化するため、ウェーブレットガイドスキップ接続(WGSC)は高周波成分を保存し、特徴通信モジュール(FCM)は双方向の双方向通信を促進する。
フレーム間の変位を補正するために、条件誘導空間変換融合(CGSTF)は、条件付きエコーから空間変換を学習し、浅い特徴を整列させる。
バックボーンは修正フロートレーニングを採用して、ほぼ直線的な確率フローの軌跡を学習し、安定した忠実度で数ステップのサンプリングを可能にする。
さらに、軽量のVision-RWKV(RWKV)ブロックをエンコーダのテール、ボトルネック、および第1のデコーダ層に配置し、適度な計算で低空間解像度で長距離時空間依存性をキャプチャする。
4つの公開データセット(SEVIR、MeteoNet、上海、CIKM)の評価では、強いベースラインよりも一貫した改善が示され、降水率の高い閾値でのエコー形態が明確になり、長いリードタイムでスキルが持続する。
これらの結果から,大規模通信,空間アライメント,周波数アライメントを併用したRF訓練の相乗効果は,レーダベースの流し込みに有効かつ堅牢なアプローチであることが示唆された。
関連論文リスト
- OptiVote: Non-Coherent FSO Over-the-Air Majority Vote for Communication-Efficient Distributed Federated Learning in Space Data Centers [68.73273027298625]
メガコンステレーションは、宇宙データセンター(SDC)の長期的なビジョンを推進している
AirCompはフリースペース(FSO)を学習するためのネットワーク内集約フレームワーク
AirVoteは符号勾配(SGD)と多数符号変調(PPM)を統合し、各衛星はPPMタイムスロットを活性化することで局所勾配を伝達する。
OptiVoteは位相依存性電場重ね合わせを位相非依存光強度結合に緩和する。
論文 参考訳(メタデータ) (2025-12-30T16:40:02Z) - Real-Time LiDAR Super-Resolution via Frequency-Aware Multi-Scale Fusion [0.4078247440919472]
FLASH (Frequency-aware LiDAR Adaptive Super- resolution with Hierarchical fusion) は、二重ドメイン処理による制限を克服する新しいフレームワークである。
FLASHは、2つの重要なイノベーションを統合する: (i) 局所的な空間的注意とFFTによるグローバルな周波数領域分析を組み合わせ、細粒度の幾何と周期的な走査パターンの両方をログ線形複雑度で捉え、 (ii) 学習された位置特異的な特徴集約による従来のスキップ接続を置き換え、CBAMによる動的特徴選択のために強化する適応的マルチスケールフュージョン。
論文 参考訳(メタデータ) (2025-11-10T18:38:15Z) - AWEMixer: Adaptive Wavelet-Enhanced Mixer Network for Long-Term Time Series Forecasting [12.450099337354017]
適応ウェーブレット強化ミキサーネットワークであるAWEMixerを提案する。
周波数ルータは、Fast Fourier Transformによって達成された大域的周期パターンを利用して、局所化ウェーブレットサブバンドを適応的に重み付けする。
コヒーレントゲート融合ブロックは、多スケール時間表現による顕著な周波数特徴の選択的統合を実現する。
論文 参考訳(メタデータ) (2025-11-06T11:27:12Z) - Flow-Matching Guided Deep Unfolding for Hyperspectral Image Reconstruction [53.26903617819014]
Flow-Matching-Guided Unfolding Network (FMU)は、最初にフローマッチングをHSI再構成に統合する。
学習力学をさらに強化するために,平均速度損失を導入する。
シミュレーションと実データの両方の実験により、FMUは復元品質において既存のアプローチよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2025-10-02T11:32:00Z) - Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
リモートセンシング画像の変化検出は,自然災害監視,都市拡張追跡,インフラ管理など,さまざまな工学的応用において重要な役割を担っている。
既存のほとんどの手法は空間領域モデリングに依存しており、特徴表現の限られた多様性は微妙な変化領域の検出を妨げる。
本研究では、特にウェーブレット領域における周波数領域の特徴モデリングが周波数成分の微細な違いを増幅し、空間領域において捉えにくいエッジ変化の知覚を高めることを観察する。
論文 参考訳(メタデータ) (2025-08-07T11:14:16Z) - FLEX: A Backbone for Diffusion-Based Modeling of Spatio-temporal Physical Systems [51.15230303652732]
FLEX (F Low Expert) は、時間物理系の生成モデリングのためのバックボーンアーキテクチャである。
拡散モデルにおける速度場の分散を低減し、トレーニングの安定化に役立つ。
少数の特徴を2つの逆拡散ステップとして用いて、超解像および予測タスクの正確な予測を行う。
論文 参考訳(メタデータ) (2025-05-23T00:07:59Z) - AMR-Transformer: Enabling Efficient Long-range Interaction for Complex Neural Fluid Simulation [33.63726923336252]
本稿では,AMR-Transformerを提案する。
これは、Navier-Stokes制約を意識した高速刈取モジュールと、新しい適応メッシュリファインメントスキームを統合している。
提案手法は,ベースラインモデルよりも精度が向上する。
論文 参考訳(メタデータ) (2025-03-13T11:16:42Z) - STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Inlicit Neural Representations (INR) は、連続的な信号をモデリングするための強力なフレームワークとして登場した。
ReLUベースのネットワークのスペクトルバイアスは、十分に確立された制限であり、ターゲット信号の微細な詳細を捕捉する能力を制限する。
Sinusoidal Trainable Function Activation (STAF)について紹介する。
STAFは本質的に周波数成分を変調し、自己適応型スペクトル学習を可能にする。
論文 参考訳(メタデータ) (2025-02-02T18:29:33Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Learning OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
達成可能な情報レートを最大化しつつ,選択した制約を満たすOFDMベースの波形を設計するための学習ベース手法を提案する。
エンドツーエンドシステムは,PAPRとACLRの制約を満たすことができ,スループットを著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2021-10-21T08:58:59Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。