論文の概要: Beyond Interaction Effects: Two Logics for Studying Population Inequalities
- arxiv url: http://arxiv.org/abs/2601.04223v1
- Date: Fri, 26 Dec 2025 19:25:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-11 18:48:17.632284
- Title: Beyond Interaction Effects: Two Logics for Studying Population Inequalities
- Title(参考訳): 相互作用効果を超えて:人口不平等を研究するための2つの論理
- Authors: Adel Daoud,
- Abstract要約: 導出と導出の選択は、解釈可能性と柔軟性のトレードオフを反映していることを示す。
我々の枠組みは不平等研究に特に関係しており、社会的なサブ人口間でどのように治療効果が変化するかを理解することは実質的に中心的である。
- 参考スコア(独自算出の注目度): 2.710807780228189
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: When sociologists and other social scientist ask whether the return to college differs by race and gender, they face a choice between two fundamentally different modes of inquiry. Traditional interaction models follow deductive logic: the researcher specifies which variables moderate effects and tests these hypotheses. Machine learning methods follow inductive logic: algorithms search across vast combinatorial spaces to discover patterns of heterogeneity. This article develops a framework for navigating between these approaches. We show that the choice between deduction and induction reflects a tradeoff between interpretability and flexibility, and we demonstrate through simulation when each approach excels. Our framework is particularly relevant for inequality research, where understanding how treatment effects vary across intersecting social subpopulation is substantively central.
- Abstract(参考訳): 社会学者や他の社会科学者が、大学への復帰が人種と性別によって異なるかどうかを問うと、基本的に異なる2つの調査方法が選択される。
研究者はどの変数が適度な効果を示すかを特定し、これらの仮説をテストする。
機械学習手法は帰納論理に従う: アルゴリズムは異質性のパターンを発見するために広大な組合せ空間を探索する。
この記事では、これらのアプローチをナビゲートするためのフレームワークを開発します。
導出と導出の選択が解釈可能性と柔軟性のトレードオフを反映していることを示し、各アプローチが優れている場合のシミュレーションを通して示す。
我々の枠組みは不平等研究に特に関係しており、社会的サブ集団間における治療効果の多様性の理解は実質的に中心的である。
関連論文リスト
- Schoenfeld's Anatomy of Mathematical Reasoning by Language Models [56.656180566692946]
我々は、Schoenfeldのエピソード理論を誘導型中間スケールレンズとして採用し、ThinkARM(モデルにおける推論の解剖学)を紹介する。
ThinkARMは、推論トレースを分析、探索、実装、検証などの機能的推論ステップに明示的に抽象化する。
エピソードレベルの表現は推論ステップを明確にし、現代の言語モデルにおける推論がどのように構造化され、安定化され、変更されるかの体系的な分析を可能にする。
論文 参考訳(メタデータ) (2025-12-23T02:44:25Z) - LogiDynamics: Unraveling the Dynamics of Inductive, Abductive and Deductive Logical Inferences in LLM Reasoning [74.0242521818214]
本稿では,大言語モデル(LLM)におけるインダクティブ(システム1)と帰納的/帰納的(システム2)の推論の比較力学を体系的に検討する。
我々は、制御されたアナログ推論環境、多様度(テキスト、視覚、記号)、難易度、タスク形式(MCQ/フリーテキスト)を利用する。
我々の分析によると、System 2のパイプラインは一般的に、特に視覚的/象徴的なモダリティや難しいタスクにおいて優れており、System 1はテキストやより簡単な問題に対して競争力がある。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Argumentation and Machine Learning [4.064849471241967]
本章では,計算論と機械学習のクロス・フェーティフィケーションのある程度のアプローチを提示する研究の概要を紹介する。
これら2つの領域間の相互作用の目的を表す2つの広いテーマが同定された。
我々は,学習の種類や議論フレームワークの形式など,様々な次元にわたる作品のスペクトルを評価する。
論文 参考訳(メタデータ) (2024-10-31T08:19:58Z) - The Cognitive Revolution in Interpretability: From Explaining Behavior to Interpreting Representations and Algorithms [3.3653074379567096]
機械的解釈可能性(MI)は、大きな言語モデルのような基礎モデルによって学習された特徴と暗黙のアルゴリズムを研究する別の研究領域として登場した。
我々は、20世紀の心理学における「認知革命」を反映した深層学習解釈の移行を促進するために、現在の手法が熟していると論じる。
計算神経科学におけるキーパラレルを反映した分類法を提案し,MI研究の2つの幅広いカテゴリについて述べる。
論文 参考訳(メタデータ) (2024-08-11T20:50:16Z) - Reconciling Heterogeneous Effects in Causal Inference [44.99833362998488]
本稿では、機械学習におけるモデル乗法にReconcileアルゴリズムを適用し、因果推論における異種効果を再現する。
本研究の結果は,医療,保険,住宅などの高額な事業において,公正な成果の確保に有意な意味を持っている。
論文 参考訳(メタデータ) (2024-06-05T18:43:46Z) - Understanding the wiring evolution in differentiable neural architecture
search [114.31723873105082]
識別可能なニューラルネットワーク探索手法が配線トポロジを効果的に発見するかどうかについては議論がある。
既存の差別化可能なNASフレームワークの基盤メカニズムについて検討する。
論文 参考訳(メタデータ) (2020-09-02T18:08:34Z) - On the Relationship Between Active Inference and Control as Inference [62.997667081978825]
アクティブ推論(英: Active Inference、AIF)は、生物学的エージェントがモデルエビデンスに束縛された変動を最小限に抑えることを示唆する脳科学の新たな枠組みである。
制御・アズ・推論(英: Control-as-Inference, CAI)は、意思決定を変分推論問題とみなす強化学習の枠組みである。
論文 参考訳(メタデータ) (2020-06-23T13:03:58Z) - Neural Analogical Matching [8.716086137563243]
人間と類似することの重要性は、人工知能の幅広い分野における研究の活発な領域となった。
本稿では,構造的,記号的表現間の類似を学習するニューラルネットワークであるAnalogical Matching Networkを紹介する。
論文 参考訳(メタデータ) (2020-04-07T17:50:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。