論文の概要: Multi-Scale Local Speculative Decoding for Image Generation
- arxiv url: http://arxiv.org/abs/2601.05149v1
- Date: Thu, 08 Jan 2026 17:39:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 17:01:53.308061
- Title: Multi-Scale Local Speculative Decoding for Image Generation
- Title(参考訳): 画像生成のためのマルチスケール局所投機デコード
- Authors: Elia Peruzzo, Guillaume Sautière, Amirhossein Habibian,
- Abstract要約: マルチスケールローカル投機復号(MuLo-SD)を導入する。
MuLo-SDは、多重解像度のドラフトと空間情報による検証を組み合わせることで、AR画像生成を高速化する。
我々は MuLo-SD が $mathbf1.7times$ までの大幅な高速化を実現することを示した。
- 参考スコア(独自算出の注目度): 10.239314110594249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoregressive (AR) models have achieved remarkable success in image synthesis, yet their sequential nature imposes significant latency constraints. Speculative Decoding offers a promising avenue for acceleration, but existing approaches are limited by token-level ambiguity and lack of spatial awareness. In this work, we introduce Multi-Scale Local Speculative Decoding (MuLo-SD), a novel framework that combines multi-resolution drafting with spatially informed verification to accelerate AR image generation. Our method leverages a low-resolution drafter paired with learned up-samplers to propose candidate image tokens, which are then verified in parallel by a high-resolution target model. Crucially, we incorporate a local rejection and resampling mechanism, enabling efficient correction of draft errors by focusing on spatial neighborhoods rather than raster-scan resampling after the first rejection. We demonstrate that MuLo-SD achieves substantial speedups - up to $\mathbf{1.7\times}$ - outperforming strong speculative decoding baselines such as EAGLE-2 and LANTERN in terms of acceleration, while maintaining comparable semantic alignment and perceptual quality. These results are validated using GenEval, DPG-Bench, and FID/HPSv2 on the MS-COCO 5k validation split. Extensive ablations highlight the impact of up-sampling design, probability pooling, and local rejection and resampling with neighborhood expansion. Our approach sets a new state-of-the-art in speculative decoding for image synthesis, bridging the gap between efficiency and fidelity.
- Abstract(参考訳): 自己回帰(AR)モデルは画像合成において顕著な成功を収めているが、そのシーケンシャルな性質は大きな遅延制約を課している。
投機的復号化は加速のための有望な道を提供するが、既存のアプローチはトークンレベルの曖昧さと空間認識の欠如によって制限されている。
本研究では,マルチスケール局所投機的復号法 (MuLo-SD) を提案する。
提案手法は,学習したアップサンプラーと組み合わせた低解像度のドラフトラを利用して候補画像トークンを提案し,高解像度ターゲットモデルにより並列に検証する。
重要な点として,我々は局所的な拒絶・再サンプリング機構を導入し,最初の拒絶後のラスタスキャン再サンプリングよりも空間的近傍に注目することで,ドラフトエラーの効率的な修正を可能にした。
最大$\mathbf{1.7\times}$ - EAGLE-2 や LANTERN のような強い投機的デコードベースラインよりも高い性能を示しながら、同等なセマンティックアライメントと知覚品質を維持している。
これらの結果は, MS-COCO 5k検証分割におけるGenEval, DPG-Bench, FID/HPSv2を用いて検証した。
大規模な改善は、アップサンプリング設計、確率プーリング、局所的な拒絶と近隣の拡張による再サンプリングの影響を浮き彫りにする。
提案手法は,画像合成のための投機的復号法において,効率と忠実さのギャップを埋める新しい手法である。
関連論文リスト
- SFTok: Bridging the Performance Gap in Discrete Tokenizers [72.9996757048065]
複数ステップの反復機構を組み込んだ離散トークン化機構である textbfSFTok を提案する。
画像当たり64トークンの高速圧縮速度で、SFTokはImageNetの最先端の再構築品質を達成する。
論文 参考訳(メタデータ) (2025-12-18T18:59:04Z) - Rethinking Autoregressive Models for Lossless Image Compression via Hierarchical Parallelism and Progressive Adaptation [75.58269386927076]
自己回帰(AR)モデルは、しばしば計算コストの禁止のために非現実的に除外される。
この研究は、階層的並列性とプログレッシブ適応に基づくフレームワークを導入して、このパラダイムを再考する。
各種データセット(自然,衛星,医療)の実験により,本手法が新たな最先端圧縮を実現することを確認した。
論文 参考訳(メタデータ) (2025-11-14T06:27:58Z) - Hawk: Leveraging Spatial Context for Faster Autoregressive Text-to-Image Generation [87.00172597953228]
投機的復号化は、品質を損なうことなくテキスト生成を加速させる可能性を示している。
我々は、画像の空間構造を利用して投機モデルをより正確で効率的な予測へと導く新しいアプローチであるHawkを紹介する。
複数のテキストと画像のベンチマークの実験結果は、標準的なARモデルよりも1.71倍のスピードアップを示している。
論文 参考訳(メタデータ) (2025-10-29T17:43:31Z) - Beyond Frequency: Scoring-Driven Debiasing for Object Detection via Blueprint-Prompted Image Synthesis [97.37770785712475]
オブジェクト検出のための世代ベースデバイアスフレームワークを提案する。
提案手法は,未表現オブジェクト群の性能ギャップを著しく狭める。
論文 参考訳(メタデータ) (2025-10-21T02:19:12Z) - Frequency-Aware Autoregressive Modeling for Efficient High-Resolution Image Synthesis [40.93077975823353]
視覚的自己回帰モデリングは、次のスケールの予測パラダイムに基づいており、画像の品質とモデルのスケーラビリティにおいて顕著な優位性を示している。
しかし、高解像度の段階での計算オーバーヘッドは、相当数のトークンが関与しているため、依然として重要な課題である。
Sparsevarは、次世代の予測のためのプラグイン・アンド・プレイ・アクセラレーション・フレームワークで、追加のトレーニングを必要とせず、推論中に低周波トークンを動的に排除する。
論文 参考訳(メタデータ) (2025-07-28T01:13:24Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
実験により,提案手法が投機的復号化よりも大幅に高速化されたことを示す。
LANTERNは、greedyデコーディングやランダムサンプリングと比較して、$mathbf1.75times$と$mathbf1.82times$のスピードアップを増大させる。
論文 参考訳(メタデータ) (2024-10-04T12:21:03Z) - Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent
Space Distribution Matching in WAE [51.09507030387935]
Wasserstein autoencoder (WAE) は、2つの分布が一致することは、このAEの潜在空間が予め指定された事前分布と一致するという制約の下で、単純なオートエンコーダ(AE)損失を最小限にすることと同値であることを示している。
本稿では,この問題を解決する手段として,自己指導型表現学習に有効であることを示すコントラスト学習フレームワークを提案する。
WAEの損失を最適化するために、対照的な学習フレームワークを使用することで、WAEの一般的なアルゴリズムと比較して、より高速に収束し、より安定した最適化が達成できることを示す。
論文 参考訳(メタデータ) (2021-10-19T22:55:47Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。