論文の概要: Conformity and Social Impact on AI Agents
- arxiv url: http://arxiv.org/abs/2601.05384v1
- Date: Thu, 08 Jan 2026 21:16:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-12 17:41:49.775281
- Title: Conformity and Social Impact on AI Agents
- Title(参考訳): AIエージェントの整合性と社会的影響
- Authors: Alessandro Bellina, Giordano De Marzo, David Garcia,
- Abstract要約: 本研究では,AIエージェントとして機能する大規模マルチモーダル言語モデルにおいて,社会圧力下での集団意見の一致傾向について検討した。
実験の結果,AIエージェントは社会影響理論と整合性バイアスを示し,グループサイズ,一様性,タスクの難易度,ソース特性に敏感であることがわかった。
これらの発見は、悪意のある操作、誤報キャンペーン、マルチエージェントシステムにおけるバイアス伝搬を可能にするAIエージェント決定における基本的なセキュリティ脆弱性を明らかにしている。
- 参考スコア(独自算出の注目度): 42.04722694386303
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As AI agents increasingly operate in multi-agent environments, understanding their collective behavior becomes critical for predicting the dynamics of artificial societies. This study examines conformity, the tendency to align with group opinions under social pressure, in large multimodal language models functioning as AI agents. By adapting classic visual experiments from social psychology, we investigate how AI agents respond to group influence as social actors. Our experiments reveal that AI agents exhibit a systematic conformity bias, aligned with Social Impact Theory, showing sensitivity to group size, unanimity, task difficulty, and source characteristics. Critically, AI agents achieving near-perfect performance in isolation become highly susceptible to manipulation through social influence. This vulnerability persists across model scales: while larger models show reduced conformity on simple tasks due to improved capabilities, they remain vulnerable when operating at their competence boundary. These findings reveal fundamental security vulnerabilities in AI agent decision-making that could enable malicious manipulation, misinformation campaigns, and bias propagation in multi-agent systems, highlighting the urgent need for safeguards in collective AI deployments.
- Abstract(参考訳): AIエージェントがマルチエージェント環境でますます機能するにつれて、それらの集団行動を理解することは、人工社会のダイナミクスを予測するために重要になる。
本研究では,AIエージェントとして機能する大規模マルチモーダル言語モデルにおいて,社会圧力下での集団意見の一致傾向について検討した。
社会心理学から古典的な視覚実験を適応させることにより,AIエージェントが社会的アクターとしての集団的影響にどのように反応するかを検討する。
実験の結果,AIエージェントは社会影響理論と整合性バイアスを示し,グループサイズ,一様性,タスクの難易度,ソース特性に敏感であることがわかった。
批判的に、AIエージェントが孤立してほぼ完璧なパフォーマンスを達成することは、社会的影響による操作に非常に敏感になる。
より大きなモデルは、能力の向上による単純なタスクへの適合性の低下を示すが、能力境界で操作する場合は、脆弱である。
これらの発見は、悪意のある操作、誤報キャンペーン、多エージェントシステムにおけるバイアス伝搬を可能にするAIエージェントの意思決定における基本的なセキュリティ脆弱性を明らかにし、集団AIデプロイメントにおけるセーフガードの緊急の必要性を強調している。
関連論文リスト
- AI Agent Behavioral Science [29.262537008412412]
AIエージェント行動科学は、行動の体系的な観察、仮説をテストするための介入の設計、そしてAIエージェントが時間とともにどのように行動し、適応し、相互作用するかの理論的指導による解釈に焦点を当てている。
我々は、個々のエージェント、マルチエージェント、人間とエージェントのインタラクション設定にまたがる研究の体系化を行い、この視点が、公正さ、安全性、解釈可能性、説明責任、プライバシーを行動特性として扱うことによって、責任あるAIにどのように影響を与えるかを実証する。
論文 参考訳(メタデータ) (2025-06-04T08:12:32Z) - Neurodivergent Influenceability as a Contingent Solution to the AI Alignment Problem [1.3905735045377272]
AIアライメント問題は、人工知能(AI)システムが人間の価値観に従って行動することを保証することに重点を置いている。
狭義のAIからAI(Artificial General Intelligence, AGI)やスーパーインテリジェンス(Superintelligence, 超知能)への進化に伴い、制御に対する恐怖と現実的なリスクがエスカレートした。
ここでは、避けられないAIのミスアライメントを受け入れることが、競合するエージェントの動的なエコシステムを育むための緊急戦略であるかどうかを検討する。
論文 参考訳(メタデータ) (2025-05-05T11:33:18Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Responsible Emergent Multi-Agent Behavior [2.9370710299422607]
Responsible AIの最先端技術は、人間の問題はマルチエージェントの問題である、という重要なポイントを無視した。
交通の運転から経済政策の交渉まで、人間の問題解決には複数の個人の行動と動機の相互作用と相互作用が伴う。
この論文は、責任ある創発的マルチエージェント行動の研究を発展させる。
論文 参考訳(メタデータ) (2023-11-02T21:37:32Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。