論文の概要: RingSQL: Generating Synthetic Data with Schema-Independent Templates for Text-to-SQL Reasoning Models
- arxiv url: http://arxiv.org/abs/2601.05451v1
- Date: Fri, 09 Jan 2026 00:46:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-12 17:41:49.801225
- Title: RingSQL: Generating Synthetic Data with Schema-Independent Templates for Text-to-SQL Reasoning Models
- Title(参考訳): RingSQL: テキストとSQLの推論モデルのためのスキーマに依存しないテンプレートで合成データを生成する
- Authors: Marko Sterbentz, Kevin Cushing, Cameron Barrie, Kristian J. Hammond,
- Abstract要約: Ringは、スキーマに依存しないクエリテンプレートとLLMベースの自然言語質問のパラフレーズを組み合わせたハイブリッドデータ生成フレームワークである。
我々は、Ringによってトレーニングされたモデルが、他の合成データでトレーニングされたモデルと比較して、6つのテキスト間ベンチマークの平均精度+2.3%に達することを発見した。
- 参考スコア(独自算出の注目度): 1.0062127381149395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in text-to-SQL systems have been driven by larger models and improved datasets, yet progress is still limited by the scarcity of high-quality training data. Manual data creation is expensive, and existing synthetic methods trade off reliability and scalability. Template-based approaches ensure correct SQL but require schema-specific templates, while LLM-based generation scales easily but lacks quality and correctness guarantees. We introduce RingSQL, a hybrid data generation framework that combines schema-independent query templates with LLM-based paraphrasing of natural language questions. This approach preserves SQL correctness across diverse schemas while providing broad linguistic variety. In our experiments, we find that models trained using data produced by RingSQL achieve an average gain in accuracy of +2.3% across six text-to-SQL benchmarks when compared to models trained on other synthetic data. We make our code available at https://github.com/nu-c3lab/RingSQL.
- Abstract(参考訳): テキスト-SQLシステムの最近の進歩は、より大きなモデルと改善されたデータセットによって推進されているが、高品質なトレーニングデータの不足により、依然として進展は限られている。
手動データ作成は高価であり、既存の合成手法は信頼性とスケーラビリティを損なう。
テンプレートベースのアプローチは正しいSQLを保証するが、スキーマ固有のテンプレートを必要とする。
本稿では,スキーマに依存しないクエリテンプレートとLLMに基づく自然言語質問のパラフレーズを組み合わせたハイブリッドデータ生成フレームワークRingSQLを紹介する。
このアプローチは多様なスキーマにまたがってSQLの正確性を保ちながら、幅広い言語的多様性を提供する。
我々の実験では、RingSQLが生成したデータを用いてトレーニングしたモデルが、他の合成データでトレーニングしたモデルと比較して、6つのテキスト-SQLベンチマークで平均2.3%の精度を達成していることがわかった。
コードはhttps://github.com/nu-c3lab/RingSQLで公開しています。
関連論文リスト
- Text-to-SQL as Dual-State Reasoning: Integrating Adaptive Context and Progressive Generation [54.53145282349042]
DSR-sourced, textbfDual-textbfS textbfReasoning frameworkを導入する。
ポストトレーニングやインコンテキストの例がなければ、DSR-sourcedは競合性能を達成し、スパイダー2.0-Snowで35.28%、BIRD開発で68.32%に達する。
論文 参考訳(メタデータ) (2025-11-26T13:52:50Z) - SING-SQL: A Synthetic Data Generation Framework for In-Domain Text-to-SQL Translation [2.0799061948689306]
SING-aは、高品質で高カバレッジな合成テキストデータを生成するための、完全に自動化された2段階のフレームワークである。
SING-LMは、合成データに基づいて微調整されたコンパクト言語モデルのファミリーである。
論文 参考訳(メタデータ) (2025-09-30T02:14:49Z) - Text-to-SQL Domain Adaptation via Human-LLM Collaborative Data Annotation [26.834687657847454]
テキスト-to-sqlモデルは、現実世界のアプリケーションでますます採用されている。
このようなモデルを現実世界にデプロイするには、特定のアプリケーションで使用される高度に専門化されたデータベーススキーマにそれらを適用する必要があることが多い。
既存のtext-to-sqlモデルは、新しいスキーマに適用した場合、大幅なパフォーマンス低下を経験する。
スキーマの進化のための高品質なテキスト間データを継続的に取得することは、現実世界のシナリオでは違法に高価である。
論文 参考訳(メタデータ) (2025-02-21T22:32:35Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - MSc-SQL: Multi-Sample Critiquing Small Language Models For Text-To-SQL Translation [10.205010004198757]
テキスト・ツー・ジェネレーションは、非専門家が自然言語でデータベースと対話することを可能にする。
GPT-4のような大規模クローズドソースモデルの最近の進歩は、アクセシビリティ、プライバシ、レイテンシの課題を提示している。
我々は、小型で効率的でオープンソースのテキスト・ツー・ジェネレーション・モデルの開発に注力する。
論文 参考訳(メタデータ) (2024-10-16T18:03:24Z) - SQL-GEN: Bridging the Dialect Gap for Text-to-SQL Via Synthetic Data And Model Merging [30.306023265985658]
あらゆる方言に対して高品質な合成学習データを生成するためのフレームワークを提案する。
本稿では,方言間の共有知識を活用する新しいMixture-of-Experts(MoE)を提案する。
論文 参考訳(メタデータ) (2024-08-22T20:50:48Z) - Synthesizing Text-to-SQL Data from Weak and Strong LLMs [68.69270834311259]
オープンソースとクローズドソースの大規模言語モデル(LLM)の能力ギャップは、テキスト・トゥ・タスクにおいて依然として課題である。
より大規模で強力なモデルによって生成されたデータと、より小さく、不整合なモデルによって生成されたエラー情報データを組み合わせた合成データアプローチを導入する。
論文 参考訳(メタデータ) (2024-08-06T15:40:32Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
最先端のテキストから重み付けアルゴリズムは、強化された合成データでトレーニングされた場合、一般的なベンチマークでは改善されなかった。
本稿では,スキーマから重要な関係を取り入れ,強い型付けを課し,スキーマ重み付きカラムサンプリングを行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-17T02:53:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。