論文の概要: Jailbreaking Large Language Models through Iterative Tool-Disguised Attacks via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2601.05466v1
- Date: Fri, 09 Jan 2026 01:41:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-12 17:41:49.808479
- Title: Jailbreaking Large Language Models through Iterative Tool-Disguised Attacks via Reinforcement Learning
- Title(参考訳): 強化学習による反復的ツール分割攻撃による大規模言語モデルの脱獄
- Authors: Zhaoqi Wang, Zijian Zhang, Daqing He, Pengtao Kou, Xin Li, Jiamou Liu, Jincheng An, Yong Liu,
- Abstract要約: iMIST (underlineinteractive underlineMulti-step underlineProgreunderlinessive underlineTool-disguised Jailbreak Attack) は、現在の防御機構の脆弱性を利用する新しい適応型ジェイルブレイク手法である。
広く使われているモデルの実験では、iMISTは低い拒絶率を維持しながら高い攻撃効果を発揮することが示された。
- 参考スコア(独自算出の注目度): 26.571996871795154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities across diverse applications, however, they remain critically vulnerable to jailbreak attacks that elicit harmful responses violating human values and safety guidelines. Despite extensive research on defense mechanisms, existing safeguards prove insufficient against sophisticated adversarial strategies. In this work, we propose iMIST (\underline{i}nteractive \underline{M}ulti-step \underline{P}rogre\underline{s}sive \underline{T}ool-disguised Jailbreak Attack), a novel adaptive jailbreak method that synergistically exploits vulnerabilities in current defense mechanisms. iMIST disguises malicious queries as normal tool invocations to bypass content filters, while simultaneously introducing an interactive progressive optimization algorithm that dynamically escalates response harmfulness through multi-turn dialogues guided by real-time harmfulness assessment. Our experiments on widely-used models demonstrate that iMIST achieves higher attack effectiveness, while maintaining low rejection rates. These results reveal critical vulnerabilities in current LLM safety mechanisms and underscore the urgent need for more robust defense strategies.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多様なアプリケーションにまたがる顕著な能力を示しているが、人間の価値観や安全ガイドラインを侵害する有害な反応を誘発するジェイルブレイク攻撃に対して、致命的な脆弱さを保っている。
防衛機構の広範な研究にもかかわらず、既存の安全対策は高度な敵戦略に対して不十分であることが証明された。
本研究では,現在の防御機構の脆弱性を相乗的に活用する新しい適応型ジェイルブレイク手法であるiMIST(\underline{i}nteractive \underline{M}ulti-step \underline{P}rogre\underline{s}sive \underline{T}ool-disguised Jailbreak Attack)を提案する。
iMISTは、悪意のあるクエリを通常のツール呼び出しとして偽装し、コンテンツフィルタをバイパスすると同時に、リアルタイムな有害度評価によって導かれるマルチターンダイアログを通じて応答有害度を動的にエスカレートするインタラクティブなプログレッシブ最適化アルゴリズムを導入している。
本実験は,iMISTが低拒否率を維持しながら高い攻撃効果を発揮することを示す。
これらの結果から,現在のLLM安全機構の重大な脆弱性が明らかとなり,より堅牢な防衛戦略の必要性が浮き彫りになった。
関連論文リスト
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
マルチモーダル大規模言語モデル(MLLM)のセキュリティを高めるために,Secure Tug-of-War(SecTOW)を提案する。
SecTOWは2つのモジュールで構成される:ディフェンダーと補助攻撃者。どちらも強化学習(GRPO)を使用して反復的に訓練される。
SecTOWは、一般的な性能を維持しながら、セキュリティを大幅に改善することを示す。
論文 参考訳(メタデータ) (2025-07-29T17:39:48Z) - Scalable Defense against In-the-wild Jailbreaking Attacks with Safety Context Retrieval [25.17143802138141]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱であり、敵は危険または非倫理的な反応を引き起こすために慎重に設計されたプロンプトを悪用する。
安全コンテキスト検索(SCR, Safety Context Retrieval)は,LLMの脱獄防止のためのスケーラブルで堅牢な安全保護パラダイムである。
論文 参考訳(メタデータ) (2025-05-21T16:58:14Z) - AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models [0.0]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃の脆弱性を示し続けている。
本稿では,敵対的即時生成を自動化する新しいフレームワークであるAutoAdvを紹介する。
我々の攻撃は、有害なコンテンツ生成に対して最大86%のジェイルブレイク成功率を達成したことを示す。
論文 参考訳(メタデータ) (2025-04-18T08:38:56Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversationは、新しいマルチターンジェイルブレイクフレームワークである。
有害なクエリを良心的な推論タスクに再構成する。
RACEは,複雑な会話シナリオにおいて,最先端攻撃の有効性を実現する。
論文 参考訳(メタデータ) (2025-02-16T09:27:44Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。