論文の概要: Task Arithmetic with Support Languages for Low-Resource ASR
- arxiv url: http://arxiv.org/abs/2601.07038v1
- Date: Sun, 11 Jan 2026 19:24:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:01.130452
- Title: Task Arithmetic with Support Languages for Low-Resource ASR
- Title(参考訳): 低リソースASRのためのサポート言語を用いたタスク算術
- Authors: Emma Rafkin, Dan DeGenaro, Xiulin Yang,
- Abstract要約: 多くの低リソース自然言語処理タスクへの既存のアプローチは、高リソース言語からの追加データを活用する。
人気が高まっている1つのアプローチは、タスク演算を使用して、異なるタスクでトレーニングされたモデルを組み合わせて、トレーニングデータが少ないタスクのためのモデルを作成する。
本稿では,特定の言語の訓練をタスクとみなし,Whisper ASRシステムの微調整によるタスクベクトルを生成する。
- 参考スコア(独自算出の注目度): 2.0368746869445236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of resource-constrained approaches to automatic speech recognition (ASR) is of great interest due to its broad applicability to many low-resource languages for which there is scant usable data. Existing approaches to many low-resource natural language processing tasks leverage additional data from higher-resource languages that are closely related to a target low-resource language. One increasingly popular approach uses task arithmetic to combine models trained on different tasks to create a model for a task where there is little to no training data. In this paper, we consider training on a particular language to be a task, and we generate task vectors by fine-tuning variants of the Whisper ASR system. For pairings of high- and low-resource languages, we merge task vectors via a linear combination, optimizing the weights of the linear combination on the downstream word error rate on the low-resource target language's validation set. We find that this approach consistently improves performance on the target languages.
- Abstract(参考訳): リソースに制約のある自動音声認識(ASR)の開発は、多くの低リソース言語に適用可能であり、使用可能なデータが存在するため、大きな関心を集めている。
多くの低リソース自然言語処理タスクに対する既存のアプローチは、ターゲットとする低リソース言語と密接に関連している高リソース言語からの追加データを活用する。
人気が高まっている1つのアプローチは、タスク演算を使用して、異なるタスクでトレーニングされたモデルを組み合わせて、トレーニングデータが少ないタスクのためのモデルを作成する。
本稿では,特定の言語の訓練をタスクとみなし,Whisper ASRシステムの微調整によるタスクベクトルを生成する。
高リソース言語と低リソース言語のペアリングでは、線形結合によってタスクベクトルをマージし、低リソース対象言語の検証セット上の下流単語誤り率に対する線形結合の重み付けを最適化する。
このアプローチは、ターゲット言語のパフォーマンスを継続的に改善する。
関連論文リスト
- Bridging Language Gaps: Enhancing Few-Shot Language Adaptation [32.157041759856]
言語資源の格差は、多言語NLPにおける課題となっている。
高リソース言語は広範なデータから恩恵を受ける一方、低リソース言語は効果的なトレーニングに十分なデータを持っていない。
我々のContrastive Language Alignment with Prompting (CoLAP) 法は、コントラスト学習と言語間表現を統合することで、このギャップに対処する。
論文 参考訳(メタデータ) (2025-08-26T22:49:17Z) - Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages [0.43498389175652036]
本研究は、従来の言語モデルと新しい言語モデルと微調整されたWhisperモデルを統合し、あまり一般的でない言語での性能を高める。
我々は、特に低リソースシナリオにおいて、単語エラー率を大幅に改善したことを示す。
統合はすべてのモデルサイズに確実に貢献するが、改善の程度は様々であり、最適化された言語モデルパラメータの重要性を強調している。
論文 参考訳(メタデータ) (2025-03-30T18:03:52Z) - Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - SMILE: Speech Meta In-Context Learning for Low-Resource Language Automatic Speech Recognition [55.2480439325792]
音声メタインコンテキスト学習(SMILE)は、メタラーニングと音声インコンテキスト学習(SICL)を組み合わせた革新的なフレームワークである
SMILEは、トレーニング不要な多言語ASRタスクにおいて、ベースライン手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2024-09-16T16:04:16Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
我々のモデルは,現在の最先端手法よりも桁違いに小さく,高速でありながら,競争力のある結果が得られることを示す。
我々のマルチラベル戦略は、マルチクラス分類よりも非ターゲット言語の方が堅牢である。
論文 参考訳(メタデータ) (2023-06-02T23:04:19Z) - Adaptive Activation Network For Low Resource Multilingual Speech
Recognition [30.460501537763736]
ASRモデルの上位層に適応的アクティベーションネットワークを導入する。
また,(1)クロス言語学習,(2)アクティベーション関数をソース言語からターゲット言語に置き換える,(2)多言語学習という2つの手法を提案する。
IARPA Babelデータセットに関する実験により、我々のアプローチは、オフスクラッチトレーニングや従来のボトルネック機能に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-05-28T04:02:59Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Adversarial Meta Sampling for Multilingual Low-Resource Speech
Recognition [159.9312272042253]
多言語メタラーニングASR(MML-ASR)を改善するための新しい逆メタサンプリング(AMS)アプローチを開発しています。
AMSは、各ソース言語のタスクサンプリング確率を適応的に決定する。
MML-ASRにAMSを適用すると、2つの多言語データセットの実験結果が大幅にパフォーマンス向上します。
論文 参考訳(メタデータ) (2020-12-22T09:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。