論文の概要: Multi-environment Invariance Learning with Missing Data
- arxiv url: http://arxiv.org/abs/2601.07247v1
- Date: Mon, 12 Jan 2026 06:30:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:01.246549
- Title: Multi-environment Invariance Learning with Missing Data
- Title(参考訳): 欠測データを用いたマルチ環境不変学習
- Authors: Yiran Jia,
- Abstract要約: 本研究では、変数選択特性と$ell$エラー収束率に関する漸近的でない保証を確立する。
シミュレーションにより新しい推定器の性能を評価し,その応用をUCI Bike Sharingデータセットを用いて実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning models that can handle distribution shifts is a key challenge in domain generalization. Invariance learning, an approach that focuses on identifying features invariant across environments, improves model generalization by capturing stable relationships, which may represent causal effects when the data distribution is encoded within a structural equation model (SEM) and satisfies modularity conditions. This has led to a growing body of work that builds on invariance learning, leveraging the inherent heterogeneity across environments to develop methods that provide causal explanations while enhancing robust prediction. However, in many practical scenarios, obtaining complete outcome data from each environment is challenging due to the high cost or complexity of data collection. This limitation in available data hinders the development of models that fully leverage environmental heterogeneity, making it crucial to address missing outcomes to improve both causal insights and robust prediction. In this work, we derive an estimator from the invariance objective under missing outcomes. We establish non-asymptotic guarantees on variable selection property and $\ell_2$ error convergence rates, which are influenced by the proportion of missing data and the quality of imputation models across environments. We evaluate the performance of the new estimator through extensive simulations and demonstrate its application using the UCI Bike Sharing dataset to predict the count of bike rentals. The results show that despite relying on a biased imputation model, the estimator is efficient and achieves lower prediction error, provided the bias is within a reasonable range.
- Abstract(参考訳): 分散シフトを扱うことができる学習モデルは、ドメインの一般化において重要な課題である。
不変性学習(invariance learning)とは、環境間で不変な特徴を特定することに焦点を当てた手法であり、構造方程式モデル(SEM)内でデータ分布が符号化され、モジュラリティ条件を満たす場合の因果関係を捉えることにより、モデル一般化を改善する手法である。
このことが、環境間の固有の異質性を活用して、堅牢な予測を強化しながら因果的説明を提供する方法を開発する、不変学習を基盤とする研究の組織を成長させた。
しかし、多くの実践シナリオにおいて、データ収集のコストや複雑さのため、各環境から完全な結果データを取得することは困難である。
利用可能なデータの制限は、環境の不均一性を完全に活用するモデルの開発を妨げるため、因果的洞察と堅牢な予測の両方を改善するために、欠落した結果に対処することが重要である。
本研究では,不足した結果の下での分散目標から推定器を導出する。
可変選択特性と$\ell_2$誤差収束率に関する漸近的保証を確立する。
UCI Bike Sharing データセットを用いて自転車レンタル数を推定し,シミュレーションにより新しい推定器の性能を評価する。
その結果, バイアス計算モデルに頼っているにもかかわらず, 推定器は効率的であり, バイアスが妥当範囲内であれば予測誤差が低くなることがわかった。
関連論文リスト
- Heterogeneous Multisource Transfer Learning via Model Averaging for Positive-Unlabeled Data [2.030810815519794]
本研究では,異種データソースからの情報を直接データ共有なしで統合するトランスファー学習フレームワークを提案する。
各ソースドメインタイプに対して、調整されたロジスティック回帰モデルを実行し、平均化によって知識をPUターゲットドメインに転送する。
提案手法は,特にラベル付きデータや異種環境において,予測精度とロバスト性において,他の比較手法よりも優れる。
論文 参考訳(メタデータ) (2025-11-14T03:15:31Z) - Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
我々は新しいデータ前処理アルゴリズムOrthogonal to Bias (OB)を提案する。
OBは、連続的な敏感な変数群の影響を排除し、機械学習アプリケーションにおける反ファクトフェアネスを促進するように設計されている。
OBはモデルに依存しないため、幅広い機械学習モデルやタスクに適用できる。
論文 参考訳(メタデータ) (2024-03-26T16:40:08Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。