論文の概要: Beyond Literal Mapping: Benchmarking and Improving Non-Literal Translation Evaluation
- arxiv url: http://arxiv.org/abs/2601.07338v1
- Date: Mon, 12 Jan 2026 09:03:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:01.302745
- Title: Beyond Literal Mapping: Benchmarking and Improving Non-Literal Translation Evaluation
- Title(参考訳): リテラルマッピングを超えて: ベンチマークと非リテラル翻訳評価の改善
- Authors: Yanzhi Tian, Cunxiang Wang, Zeming Liu, Heyan Huang, Wenbo Yu, Dawei Song, Jie Tang, Yuhang Guo,
- Abstract要約: 本稿では,特殊なサブエージェントを起動するリフレクティブコアエージェントを中心に,エージェント翻訳評価フレームワークを提案する。
実験の結果、RATEの有効性が示され、現在の測定値と比較して少なくとも3.2メタスコアの改善が達成された。
- 参考スコア(独自算出の注目度): 57.11989521509119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have significantly advanced Machine Translation (MT), applying them to linguistically complex domains-such as Social Network Services, literature etc. In these scenarios, translations often require handling non-literal expressions, leading to the inaccuracy of MT metrics. To systematically investigate the reliability of MT metrics, we first curate a meta-evaluation dataset focused on non-literal translations, namely MENT. MENT encompasses four non-literal translation domains and features source sentences paired with translations from diverse MT systems, with 7,530 human-annotated scores on translation quality. Experimental results reveal the inaccuracies of traditional MT metrics and the limitations of LLM-as-a-Judge, particularly the knowledge cutoff and score inconsistency problem. To mitigate these limitations, we propose RATE, a novel agentic translation evaluation framework, centered by a reflective Core Agent that dynamically invokes specialized sub-agents. Experimental results indicate the efficacy of RATE, achieving an improvement of at least 3.2 meta score compared with current metrics. Further experiments demonstrate the robustness of RATE to general-domain MT evaluation. Code and dataset are available at: https://github.com/BITHLP/RATE.
- Abstract(参考訳): 大規模言語モデル(LLM)は、かなり高度な機械翻訳(MT)を持ち、それらを言語的に複雑なドメイン(ソーシャル・ネットワーク・サービス、文学など)に適用する。
これらのシナリオでは、翻訳はしばしば非リテラル式を扱う必要があり、MTメトリクスの不正確さにつながる。
MTメトリクスの信頼性を体系的に調査するために,まず,非文字翻訳,すなわちMENTに着目したメタ評価データセットをキュレートする。
MENTは4つのノンリテラル翻訳ドメインを含み、様々なMTシステムからの翻訳と組み合わせたソース文と、翻訳品質に関する7,530の人間による注釈付きスコアを特徴としている。
実験の結果,従来のMT測定値の不正確さとLLM-as-a-Judgeの限界,特に知識の遮断と不整合性の問題が明らかになった。
これらの制限を緩和するために、リフレクティブコアエージェントを中心に、動的に特殊なサブエージェントを起動する新しいエージェント翻訳評価フレームワークRATEを提案する。
実験の結果、RATEの有効性が示され、現在の測定値と比較して少なくとも3.2メタスコアの改善が達成された。
さらに、一般領域MT評価に対するRATEの堅牢性を示す実験も行われた。
コードとデータセットは、https://github.com/BITHLP/RATE.comで公開されている。
関連論文リスト
- Machine Translation Meta Evaluation through Translation Accuracy
Challenge Sets [92.38654521870444]
ACESは146の言語ペアにまたがる対照的な課題セットです。
このデータセットは、メトリクスが68の翻訳精度の誤差を識別できるかどうかを調べることを目的としている。
我々は、WMT2022および2023のメトリクス共有タスクに提出された50のメトリクスに対して、ACESをベンチマークすることで、大規模な研究を行う。
論文 参考訳(メタデータ) (2024-01-29T17:17:42Z) - Extrinsic Evaluation of Machine Translation Metrics [78.75776477562087]
文レベルでの翻訳と翻訳の良さを区別する上で,自動尺度が信頼性が高いかどうかは不明である。
我々は,3つの下流言語タスクにおいて,最も広く使用されているMTメトリクス(chrF,COMET,BERTScoreなど)のセグメントレベル性能を評価する。
実験の結果,各指標は下流結果の外部評価と負の相関を示すことがわかった。
論文 参考訳(メタデータ) (2022-12-20T14:39:58Z) - HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using
Professional Post-Editing Towards More Effective MT Evaluation [0.0]
本研究では,機械翻訳出力のためのタスク指向・人間中心評価フレームワークHOPEを紹介する。
一般的に発生するエラーの種類は限られており、各翻訳ユニットにエラー重大度レベルを反映する誤差ペナルティポイント(EPP)の幾何学的進行を伴うスコアリングモデルを使用する。
このアプローチには、異なるシステムからの完全なMT出力を測定および比較する能力、品質に対する人間の認識を示す能力、MT出力を高品質にするために必要となる労力の即時見積、低コストで高速なアプリケーション、より高いIRRなど、いくつかの重要な利点がある。
論文 参考訳(メタデータ) (2021-12-27T18:47:43Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
談話の適切な処理は機械翻訳(MT)の品質に大きく貢献する
文脈認識型MTにおける最近の研究は、評価中に少量の談話現象を標的にしようとしている。
談話現象のモデル性能を識別・評価するタグの集合である,多言語談話認識ベンチマークを開発した。
論文 参考訳(メタデータ) (2021-09-15T17:29:30Z) - On the Limitations of Cross-lingual Encoders as Exposed by
Reference-Free Machine Translation Evaluation [55.02832094101173]
クロスランガルエンコーダの評価は通常、教師付き下流タスクにおけるゼロショットのクロスランガル転送または教師なしのクロスランガル類似性によって行われる。
本稿では、ソーステキストと(低品質な)システム翻訳を直接比較するMT(Reference-free Machine Translation)の評価について述べる。
事前学習したM-BERTとLASERで得られた最先端の言語間セマンティック表現に基づいて,様々なメトリクスを体系的に検討する。
参照なしMT評価において,セマンティックエンコーダとしての性能は低く,その2つの重要な限界を同定する。
論文 参考訳(メタデータ) (2020-05-03T22:10:23Z) - Can Your Context-Aware MT System Pass the DiP Benchmark Tests? :
Evaluation Benchmarks for Discourse Phenomena in Machine Translation [7.993547048820065]
本稿では,4つの主要な談話現象の追跡と改善を目的としたMTベンチマークデータセットについて紹介する。
驚くべきことに、既存の文脈認識モデルでは、言語や現象間の会話関連翻訳が一貫して改善されない。
論文 参考訳(メタデータ) (2020-04-30T07:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。