論文の概要: VGG Induced Deep Hand Sign Language Detection
- arxiv url: http://arxiv.org/abs/2601.08262v1
- Date: Tue, 13 Jan 2026 06:39:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 18:27:19.085327
- Title: VGG Induced Deep Hand Sign Language Detection
- Title(参考訳): VGGによるディープハンド手話検出
- Authors: Subham Sharma, Sharmila Subudhi,
- Abstract要約: 本研究は,異なる障害者を対象とした手振り認識システムを提案する。
このモデルは、VGG-16netとして知られる畳み込みニューラルネットワークを使用して、広く使用されている画像データセット上でトレーニングされたモデルを構築する。
実験の結果, 転送学習機構と画像データ拡張を組み合わせることで, VGG-16ネットの精度は約98%であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hand gesture recognition is an important aspect of human-computer interaction. It forms the basis of sign language for the visually impaired people. This work proposes a novel hand gesture recognizing system for the differently-abled persons. The model uses a convolutional neural network, known as VGG-16 net, for building a trained model on a widely used image dataset by employing Python and Keras libraries. Furthermore, the result is validated by the NUS dataset, consisting of 10 classes of hand gestures, fed to the model as the validation set. Afterwards, a testing dataset of 10 classes is built by employing Google's open source Application Programming Interface (API) that captures different gestures of human hand and the efficacy is then measured by carrying out experiments. The experimental results show that by combining a transfer learning mechanism together with the image data augmentation, the VGG-16 net produced around 98% accuracy.
- Abstract(参考訳): ハンドジェスチャ認識は人間とコンピュータの相互作用の重要な側面である。
視覚障害者のための手話の基礎を形成する。
本研究は,異なる障害者を対象とした手振り認識システムを提案する。
このモデルは、VGG-16netとして知られる畳み込みニューラルネットワークを使用して、PythonとKerasライブラリを使用して、広く使用されているイメージデータセット上でトレーニングされたモデルを構築する。
さらに,10種類の手ジェスチャーからなるNUSデータセットを用いて検証を行い,モデルに検証セットとして与えた。
その後、GoogleのオープンソースのApplication Programming Interface(API)を使用して、10クラスのテストデータセットを構築し、人間の手の動きをキャプチャし、その効果を実験によって測定する。
実験の結果, 転送学習機構と画像データ拡張を組み合わせることで, VGG-16ネットの精度は約98%であった。
関連論文リスト
- Hierarchical Windowed Graph Attention Network and a Large Scale Dataset for Isolated Indian Sign Language Recognition [0.20075899678041528]
本稿では,骨格グラフ構造に基づく大規模孤立型ISLデータセットと新しいSL認識モデルを提案する。
このデータセットは、2002年に20人(男性10人、女性10人)の聴覚障害者が記録した聴覚障害者コミュニティで日常的に使われる一般的な単語をカバーしている。
人体上半身の骨格グラフを用いて,階層型ウィンドウドグラフ注意ネットワーク(HWGAT)というSL認識モデルを提案する。
論文 参考訳(メタデータ) (2024-07-19T11:48:36Z) - Online Recognition of Incomplete Gesture Data to Interface Collaborative
Robots [0.0]
本稿では,ウェアラブルセンサで捉えた静的ジェスチャー(SG)と動的ジェスチャー(DG)の大きな語彙を分類するためのHRIフレームワークを提案する。
認識されたジェスチャーは、朝食の食事を準備する共同作業でロボットを遠隔操作するために使用される。
論文 参考訳(メタデータ) (2023-04-13T18:49:08Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
接触のない3Dフィンガーナックルパターンは、識別性、距離からの視認性、利便性、利便性により、効果的な生体認証として出現している。
近年、ディープニューラルネットワークの中間機能を複数のスケールで同時に組み込むディープ・フィーチャー・コラボレーティブ・ネットワークが開発されている。
本稿では,3次元指のナックル画像を表現するために,最小次元の識別特徴ベクトルを学習する可能性を検討することにより,本手法を推し進める。
論文 参考訳(メタデータ) (2023-01-07T20:55:16Z) - HaGRID - HAnd Gesture Recognition Image Dataset [79.21033185563167]
本稿では,ハンドジェスチャ認識システム構築のための巨大なデータセットであるHaGRIDを紹介し,それを管理するデバイスとのインタラクションに着目した。
ジェスチャーは静的だが、特にいくつかの動的ジェスチャーを設計する能力のために拾われた。
HaGRIDには54,800の画像とジェスチャーラベル付きバウンディングボックスアノテーションが含まれており、手検出とジェスチャー分類のタスクを解決している。
論文 参考訳(メタデータ) (2022-06-16T14:41:32Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
ビデオベースの人物再識別(re-ID)は、異なるカメラで捉えた人々のビデオスニペットをマッチングすることを目的とした、視覚監視システムにおいて重要な技術である。
既存の手法は主に畳み込みニューラルネットワーク(CNN)に基づいており、そのビルディングブロックは近隣のピクセルを一度に処理するか、あるいは3D畳み込みが時間情報のモデル化に使用される場合、人の動きによって生じるミスアライメントの問題に悩まされる。
本稿では,人間指向グラフ法を用いて,通常の畳み込みの限界を克服することを提案する。具体的には,人手指のキーポイントに位置する特徴を抽出し,時空間グラフとして接続する。
論文 参考訳(メタデータ) (2021-11-16T08:01:16Z) - Efficient sign language recognition system and dataset creation method
based on deep learning and image processing [0.0]
本研究では,手話データセットを効果的に作成できるデジタル画像処理と機械学習の技術について検討する。
仮説をテストするために異なるデータセットが作成され、毎日14の単語が使われ、rgbカラーシステムで異なるスマートフォンによって記録された。
テストセットでは96.38%,検証セットでは81.36%の精度で,より困難な条件が得られた。
論文 参考訳(メタデータ) (2021-03-22T23:36:49Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
手話は聴覚障害者や言語障害者のコミュニケーションに使用される。
また,RGB-D法と組み合わせて最先端の性能を実現することで,Skeletonに基づく音声認識が普及しつつある。
近年のボディポーズ推定用citejin 2020wholeの開発に触発されて,全身キーポイントと特徴に基づく手話認識を提案する。
論文 参考訳(メタデータ) (2021-03-16T03:38:17Z) - Application of Facial Recognition using Convolutional Neural Networks
for Entry Access Control [0.0]
本論文は,画像中の人物を入力として捉え,その人物を著者の1人か否かを分類する,教師付き分類問題の解決に焦点をあてる。
提案手法は,(1)WoodNetと呼ばれるニューラルネットワークをスクラッチから構築し,トレーニングすること,(2)ImageNetデータベース上に事前トレーニングされたネットワークを利用することで,転送学習を活用すること,の2つである。
結果は、データセット内の個人を高い精度で分類し、保持されたテストデータに対して99%以上の精度で達成する2つのモデルである。
論文 参考訳(メタデータ) (2020-11-23T07:55:24Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - A Deep Learning Framework for Recognizing both Static and Dynamic
Gestures [0.8602553195689513]
静的なジェスチャーと動的ジェスチャーの両方を,(奥行き検出なしで)単純なRGBビジョンを用いて認識する統合フレームワークを提案する。
我々はポーズ駆動型空間アテンション戦略を採用し、提案した静的・動的ジェスチャネットワーク - StaDNet をガイドする。
いくつかの実験において、提案手法が大規模Chalearn 2016データセットの最先端結果を上回っていることが示されている。
論文 参考訳(メタデータ) (2020-06-11T10:39:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。