論文の概要: ReCo-KD: Region- and Context-Aware Knowledge Distillation for Efficient 3D Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2601.08301v1
- Date: Tue, 13 Jan 2026 07:44:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 18:27:19.104728
- Title: ReCo-KD: Region- and Context-Aware Knowledge Distillation for Efficient 3D Medical Image Segmentation
- Title(参考訳): ReCo-KD : 効率的な3次元医用画像分割のための領域・文脈認識知識蒸留法
- Authors: Qizhen Lan, Yu-Chun Hsu, Nida Saddaf Khan, Xiaoqian Jiang,
- Abstract要約: Region- and Context-Aware Knowledge Distillation (ReCo-KD) は、微細な解剖学的詳細と長距離のコンテキスト情報を高容量の教師からコンパクトな学生ネットワークに転送する訓練専用のフレームワークである。
本稿では,ReCo-KDが教師に近づき,パラメータや推論を著しく低減し,臨床展開における実用性を裏付けるものであることを示す。
- 参考スコア(独自算出の注目度): 6.3354754356733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 3D medical image segmentation is vital for diagnosis and treatment planning, but state-of-the-art models are often too large for clinics with limited computing resources. Lightweight architectures typically suffer significant performance loss. To address these deployment and speed constraints, we propose Region- and Context-aware Knowledge Distillation (ReCo-KD), a training-only framework that transfers both fine-grained anatomical detail and long-range contextual information from a high-capacity teacher to a compact student network. The framework integrates Multi-Scale Structure-Aware Region Distillation (MS-SARD), which applies class-aware masks and scale-normalized weighting to emphasize small but clinically important regions, and Multi-Scale Context Alignment (MS-CA), which aligns teacher-student affinity patterns across feature levels. Implemented on nnU-Net in a backbone-agnostic manner, ReCo-KD requires no custom student design and is easily adapted to other architectures. Experiments on multiple public 3D medical segmentation datasets and a challenging aggregated dataset show that the distilled lightweight model attains accuracy close to the teacher while markedly reducing parameters and inference latency, underscoring its practicality for clinical deployment.
- Abstract(参考訳): 正確な3D画像分割は診断と治療計画に欠かせないが、最先端のモデルはコンピュータ資源が限られているクリニックには大きすぎることが多い。
軽量アーキテクチャは通常、大きなパフォーマンス損失を被る。
このような展開と速度制約に対処するため,高容量教師からコンパクトな学生ネットワークへ,微粒な解剖学的詳細情報と長距離コンテキスト情報の両方を伝達する訓練専用フレームワークReCo-KDを提案する。
このフレームワークは、クラス認識マスクとスケール正規化重み付けを適用して、小さいが臨床的に重要な領域を強調するマルチスケール構造認識領域蒸留(MS-SARD)と、特徴レベルの教師親和性パターンを整列するマルチスケールコンテキスト調整(MS-CA)を統合している。
ReCo-KD は nnU-Net にバックボーンに依存しない方法で実装されており、カスタムの学生設計は必要とせず、他のアーキテクチャにも容易に適応できる。
複数のパブリックな3D医療セグメンテーションデータセットと挑戦的な集計データセットの実験では、蒸留された軽量モデルは教師の近くで精度を達成し、パラメータと推論遅延を著しく低減し、臨床展開の実用性を裏付けている。
関連論文リスト
- TGC-Net: A Structure-Aware and Semantically-Aligned Framework for Text-Guided Medical Image Segmentation [56.09179939570486]
本稿では,パラメータ効率,タスク固有適応に着目したCLIPベースのフレームワークであるTGC-Netを提案する。
TGC-Netは、挑戦的なベンチマークで顕著なDiceゲインを含む、トレーニング可能なパラメータをかなり少なくして、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-12-24T12:06:26Z) - Self-Supervised Anatomical Consistency Learning for Vision-Grounded Medical Report Generation [61.350584471060756]
医用画像の臨床的に正確な記述を作成することを目的とした医用レポート生成。
本稿では, 自己監督型解剖学的一貫性学習(SS-ACL)を提案し, 生成された報告を対応する解剖学的領域と整合させる。
SS-ACLは、ヒト解剖学の不変のトップダウン包摂構造にインスパイアされた階層的な解剖学的グラフを構築する。
論文 参考訳(メタデータ) (2025-09-30T08:59:06Z) - DiSSECT: Structuring Transfer-Ready Medical Image Representations through Discrete Self-Supervision [9.254163621425727]
DiSSECTはSSLパイプラインにマルチスケールベクトル量子化を統合するフレームワークで、離散的な表現ボトルネックを課す。
分類タスクとセグメンテーションタスクの両方で強力なパフォーマンスを実現し、微調整は最小か不要である。
複数の公開医用画像データセットにまたがってDiSSECTを検証し、その堅牢性と一般化性を示す。
論文 参考訳(メタデータ) (2025-09-23T07:58:21Z) - Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging [0.510750648708198]
心血管疾患の診断にはCTとMRIによる全肝分画が不可欠である。
既存の方法は、モダリティ固有のバイアスと、広範なラベル付きデータセットの必要性に苦慮している。
学生-教師アーキテクチャに基づく自己指導型学習フレームワークを用いて,全音節セグメンテーションのための基礎モデルを提案する。
論文 参考訳(メタデータ) (2025-03-24T14:47:54Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
完全に注釈付きCTデータセットは存在せず、すべての解剖学がトレーニングのために記述されている。
完全解剖を分割できる連続学習駆動CTモデルを提案する。
単体CT分割モデルCL-Netは, 臨床的に包括的に包括的に235個の粒状体解剖の集合を高精度に分割することができる。
論文 参考訳(メタデータ) (2025-03-16T23:55:02Z) - Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields [19.71033340093199]
本稿では,医療画像のセグメンテーションの限界を克服する新しいアーキテクチャであるspective+Unetを提案する。
このフレームワークは ENLTB という名前の効率的な非局所トランスフォーマーブロックを組み込んでおり、これはカーネル関数近似を利用して、効率的な長距離依存性キャプチャを行う。
ACDCとデータセットに関する実験結果から,提案したパースペクティブ+Unetの有効性が示された。
論文 参考訳(メタデータ) (2024-06-20T07:17:39Z) - MedContext: Learning Contextual Cues for Efficient Volumetric Medical Segmentation [25.74088298769155]
医用3次元セグメンテーションのためのユニバーサルトレーニングフレームワークMedContextを提案する。
本手法は,教師付きボクセルセグメンテーションタスクと協調して,自己教師付きコンテキストキューを効果的に学習する。
MedContextの有効性は、複数の3D医療データセットと4つの最先端モデルアーキテクチャで検証されている。
論文 参考訳(メタデータ) (2024-02-27T17:58:05Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
データ不均衡問題に対処するため,textbfClass textbfAttention to textbfRegions of the lesion (CARE)を提案する。
CAREフレームワークは、まれな疾患の病変領域を表すために、バウンディングボックスを必要とする。
その結果,自動バウンディングボックス生成によるCARE変種は,オリジナルのCAREフレームワークに匹敵することがわかった。
論文 参考訳(メタデータ) (2023-07-19T15:19:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。