論文の概要: An Inexact Weighted Proximal Trust-Region Method
- arxiv url: http://arxiv.org/abs/2601.09024v1
- Date: Tue, 13 Jan 2026 23:07:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.191407
- Title: An Inexact Weighted Proximal Trust-Region Method
- Title(参考訳): 非接触重み付き近位信頼緩和法
- Authors: Leandro Farias Maia, Robert Baraldi, Drew P. Kouri,
- Abstract要約: 本稿では,信頼領域内の不正確な近接点を生成し,バーガーズ領域による最適近接点を求めるアルゴリズムを提案する。
我々は、内部積の重み付けによる近接作用素の不コンパクト性を扱うために、標準信頼領域理論の解析を拡張した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In [R. J. Baraldi and D. P. Kouri, Math. Program., 201:1 (2023), pp. 559-598], the authors introduced a trust-region method for minimizing the sum of a smooth nonconvex and a nonsmooth convex function, the latter of which has an analytical proximity operator. While many functions satisfy this criterion, e.g., the $\ell_1$-norm defined on $\ell_2$, many others are precluded by either the topology or the nature of the nonsmooth term. Using the $δ$-Fréchet subdifferential, we extend the definition of the inexact proximity operator and enable its use within the aforementioned trust-region algorithm. Moreover, we augment the analysis for the standard trust-region convergence theory to handle proximity operator inexactness with weighted inner products. We first introduce an algorithm to generate a point in the inexact proximity operator and then apply the algorithm within the trust-region method to solve an optimal control problem constrained by Burgers' equation.
- Abstract(参考訳): R. J. Baraldi and D. P. Kouri, Math. Program., 201:1 (2023), pp. 559-598] では、スムーズな非凸と非滑らかな凸関数の和を最小化する信頼領域法を導入し、後者は解析的近接作用素を持つ。
多くの関数がこの基準を満たすが、例えば$\ell_1$-ノルムは$\ell_2$で定義されるが、他の多くの関数は位相あるいは非滑らか項の性質によって無視される。
δ$-Fréchet部分微分を用いて、不正確な近接演算子の定義を拡張し、上記の信頼領域アルゴリズムでその使用を可能にする。
さらに、重み付き内積との近接演算子不完全性を扱うため、標準信頼領域収束理論の解析を強化する。
まず,不正確な近接演算子の点を生成するアルゴリズムを導入し,そのアルゴリズムを信頼領域法に応用して,バーガースの方程式に制約された最適制御問題を解く。
関連論文リスト
- Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits [49.96531901205305]
我々は$f$-divergence-regularized offline policy learningを分析する。
逆Kullback-Leibler (KL) の発散に対して、単極集中性の下での最初の$tildeO(epsilon-1)$サンプル複雑性を与える。
これらの結果は,$f$-divergence-regularized policy learningの包括的理解に向けて大きな一歩を踏み出したものと考えられる。
論文 参考訳(メタデータ) (2025-02-09T22:14:45Z) - Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator [49.87315310656657]
我々は, 局所曲率をサンプルで探索し, 周辺面積を適応的に定義する適応型$k$-nearest(kK$-NN)アルゴリズムを提案する。
多くの実世界のデータセットから、新しい$kK$-NNアルゴリズムは、確立された$k$-NN法と比較してバランスの取れた精度が優れていることが示されている。
論文 参考訳(メタデータ) (2024-09-08T13:08:45Z) - Rate Analysis of Coupled Distributed Stochastic Approximation for Misspecified Optimization [0.552480439325792]
パラメトリックな特徴を持つ不完全な情報を持つ分散最適化問題として$n$のエージェントを考える。
本稿では,各エージェントが未知パラメータの現在の信念を更新する分散近似アルゴリズムを提案する。
アルゴリズムの性能に影響を与える因子を定量的に解析し、決定変数の平均二乗誤差が$mathcalO(frac1nk)+mathcalOleft(frac1sqrtn (1-rho_w)right)frac1k1.5で有界であることを証明する。
論文 参考訳(メタデータ) (2024-04-21T14:18:49Z) - Optimality in Mean Estimation: Beyond Worst-Case, Beyond Sub-Gaussian,
and Beyond $1+\alpha$ Moments [10.889739958035536]
本稿では,アルゴリズムの微細な最適性を分析するための新しい定義フレームワークを提案する。
平均値の中央値は近傍最適であり, 一定の要因が得られている。
定数係数のずれのない近傍分離推定器を見つけることは自由である。
論文 参考訳(メタデータ) (2023-11-21T18:50:38Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
この研究は、目的関数が極めて滑らかであるという仮定の下で、ゼロ次ノイズオラクル情報による問題を研究する。
ゼロオーダー射影勾配勾配アルゴリズムを2種類検討する。
論文 参考訳(メタデータ) (2023-06-03T17:05:13Z) - Explicit Second-Order Min-Max Optimization: Practical Algorithms and Complexity Analysis [71.05708939639537]
本研究では,非制約問題に対するグローバルなサドル点を求めるために,不正確なNewton型手法をいくつか提案し,解析する。
提案手法は,Sur分解の必要回数の$O(log(1/eps)$因子をシェービングすることで,既存のライン検索に基づくmin-max最適化を改善する。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - Adversarial Robustness Guarantees for Gaussian Processes [22.403365399119107]
ガウス過程(GP)は、モデルの不確実性の原理的計算を可能にし、安全性に重要なアプリケーションに魅力的です。
境界付き摂動に対するモデル決定の不変性として定義されるGPの対向的堅牢性を分析するためのフレームワークを提案する。
我々は境界を洗練し、任意の$epsilon > 0$に対して、我々のアルゴリズムが有限個の反復で実際の値に$epsilon$-closeの値に収束することを保証していることを示す分岐とバウンドのスキームを開発する。
論文 参考訳(メタデータ) (2021-04-07T15:14:56Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
最小の仮定の下で、$[Pf](x) := mathbbE[f(Y) mid X = x ]$ で定義される$L2$-operatorの近似について検討する。
我々は、再生されたカーネル空間上で作用するヒルベルト・シュミット作用素により、作用素ノルムにおいて$P$が任意に適切に近似できることを証明した。
論文 参考訳(メタデータ) (2020-12-23T19:06:12Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。