論文の概要: Proactively Detecting Threats: A Novel Approach Using LLMs
- arxiv url: http://arxiv.org/abs/2601.09029v1
- Date: Tue, 13 Jan 2026 23:28:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.195548
- Title: Proactively Detecting Threats: A Novel Approach Using LLMs
- Title(参考訳): 脅威を積極的に検出する: LLMを用いた新しいアプローチ
- Authors: Aniesh Chawla, Udbhav Prasad,
- Abstract要約: 本稿では,妥協の指標(IOC)を積極的に同定する大規模言語モデル(LLM)の最初の体系的評価について述べる。
我々は、Webベースの脅威レポートソース15からIOCを抽出して、6つのLCMモデルを評価する自動システムを開発した。
Gemini 1.5 Proは、悪意のあるIOCの識別に対して0.958の精度と0.788の特異性を達成し、実際の脅威に対する完全なリコール(1.0)を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprise security faces escalating threats from sophisticated malware, compounded by expanding digital operations. This paper presents the first systematic evaluation of large language models (LLMs) to proactively identify indicators of compromise (IOCs) from unstructured web-based threat intelligence sources, distinguishing it from reactive malware detection approaches. We developed an automated system that pulls IOCs from 15 web-based threat report sources to evaluate six LLM models (Gemini, Qwen, and Llama variants). Our evaluation of 479 webpages containing 2,658 IOCs (711 IPv4 addresses, 502 IPv6 addresses, 1,445 domains) reveals significant performance variations. Gemini 1.5 Pro achieved 0.958 precision and 0.788 specificity for malicious IOC identification, while demonstrating perfect recall (1.0) for actual threats.
- Abstract(参考訳): 企業のセキュリティは、高度なマルウェアによる脅威をエスカレートし、デジタルオペレーションの拡大によって複雑化する。
本稿では,大規模言語モデル (LLMs) の体系的評価を行い,非構造化Webベース脅威情報源からの妥協の指標(IOCs)を積極的に同定し,反応性のあるマルウェア検出手法と区別する。
我々は、Webベースの脅威レポートソース15からIOCを抽出して、6つのLCMモデル(Gemini、Qwen、Llama variants)を評価する自動システムを開発した。
2,658 IOC (711 IPv4 アドレス,502 IPv6 アドレス,1,445 ドメイン) を含む 479 の Web ページを評価した結果,大幅な性能変化がみられた。
Gemini 1.5 Proは、悪意のあるIOCの識別に対して0.958の精度と0.788の特異性を達成し、実際の脅威に対する完全なリコール(1.0)を示した。
関連論文リスト
- ParaVul: A Parallel Large Language Model and Retrieval-Augmented Framework for Smart Contract Vulnerability Detection [43.41293570032631]
ParaVulは、スマートコントラクト脆弱性検出の信頼性と精度を向上させるための、検索強化フレームワークである。
LLM微調整のためのスパースローランド適応(SLoRA)を開発した。
脆弱性契約データセットを構築し,RAG(Retrieval-Augmented Generation)システムを開発した。
論文 参考訳(メタデータ) (2025-10-20T03:23:41Z) - DiffuGuard: How Intrinsic Safety is Lost and Found in Diffusion Large Language Models [50.21378052667732]
我々は、ステップ内およびステップ間ダイナミクスという2つの異なる次元にわたるジェイルブレイク攻撃に対して、dLLM脆弱性の詳細な分析を行う。
デュアルステージアプローチによる脆弱性に対処する,トレーニング不要な防御フレームワークであるDiffuGuardを提案する。
論文 参考訳(メタデータ) (2025-09-29T05:17:10Z) - VulAgent: Hypothesis-Validation based Multi-Agent Vulnerability Detection [55.957275374847484]
VulAgentは仮説検証に基づくマルチエージェント脆弱性検出フレームワークである。
セマンティクスに敏感なマルチビュー検出パイプラインを実装しており、それぞれが特定の分析の観点から一致している。
平均して、VulAgentは全体的な精度を6.6%改善し、脆弱性のある固定されたコードペアの正確な識別率を最大450%向上させ、偽陽性率を約36%削減する。
論文 参考訳(メタデータ) (2025-09-15T02:25:38Z) - When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in LLM Coding Agents [1.7587442088965226]
LLMベースのコーディングエージェントは、急速にソフトウェア開発にデプロイされているが、その安全性への影響はよく分かっていない。
我々は,5つの最先端モデルにわたる12,000以上のアクションを解析し,自律型符号化エージェントの最初の系統的安全性評価を行った。
我々は,4つの主要な脆弱性を識別する高精度検出システムを開発した。
論文 参考訳(メタデータ) (2025-07-12T16:11:07Z) - The Dark Side of LLMs: Agent-based Attacks for Complete Computer Takeover [0.0]
大規模言語モデル(LLM)エージェントとマルチエージェントシステムは、従来のコンテンツ生成からシステムレベルの妥協まで及ぶセキュリティ脆弱性を導入している。
本稿では,自律エージェント内の推論エンジンとして使用されるLLMのセキュリティを総合的に評価する。
異なる攻撃面と信頼境界がどのように活用され、そのような乗っ取りを組織化できるかを示す。
論文 参考訳(メタデータ) (2025-07-09T13:54:58Z) - Bridging AI and Software Security: A Comparative Vulnerability Assessment of LLM Agent Deployment Paradigms [1.03121181235382]
大規模言語モデル(LLM)エージェントは、AI固有の旧来のソフトウェアドメインにまたがるセキュリティ上の脆弱性に直面している。
本研究では,Function Calling アーキテクチャと Model Context Protocol (MCP) デプロイメントパラダイムの比較評価を通じて,このギャップを埋める。
私たちは7つの言語モデルにわたる3,250の攻撃シナリオをテストし、AI固有の脅威とソフトウェア脆弱性の両方を対象として、シンプルで、構成され、連鎖した攻撃を評価しました。
論文 参考訳(メタデータ) (2025-07-08T18:24:28Z) - CyberGym: Evaluating AI Agents' Real-World Cybersecurity Capabilities at Scale [45.97598662617568]
我々は188のソフトウェアプロジェクトにわたる1,507の実際の脆弱性を特徴とする大規模ベンチマークであるCyberGymを紹介した。
我々はCyberGymが35のゼロデイ脆弱性と17の歴史的不完全なパッチを発見できることを示した。
これらの結果は、CyberGymは、サイバーセキュリティにおけるAIの進歩を測定するための堅牢なベンチマークであるだけでなく、直接的な現実世界のセキュリティ効果を生み出すためのプラットフォームでもあることを強調している。
論文 参考訳(メタデータ) (2025-06-03T07:35:14Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - LLMCloudHunter: Harnessing LLMs for Automated Extraction of Detection Rules from Cloud-Based CTI [24.312198733476063]
オープンソースのサイバー脅威インテリジェンス(OS-CTI)は、脅威ハンターにとって貴重な資源である。
OSCTI分析の自動化を目的とした以前の研究は、実行可能な出力を提供できなかった。
我々は,OSCTIデータからジェネリック署名検出規則候補を自動的に生成する新しいフレームワーク LLMCloudHunter を提案する。
論文 参考訳(メタデータ) (2024-07-06T21:43:35Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。