論文の概要: Seeking Human Security Consensus: A Unified Value Scale for Generative AI Value Safety
- arxiv url: http://arxiv.org/abs/2601.09112v1
- Date: Wed, 14 Jan 2026 03:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.242101
- Title: Seeking Human Security Consensus: A Unified Value Scale for Generative AI Value Safety
- Title(参考訳): ヒューマンセキュリティの合意を探る - 生成AI価値の安全性のための統一された価値尺度
- Authors: Ying He, Baiyang Li, Yule Cao, Huirun Xu, Qiuxian Chen, Shu Chen, Shangsheng Ren,
- Abstract要約: ジェネレーティブAIは、価値と倫理に関するリスクを最前線にもたらす。
我々は、国際的に包括的で回復力のある統一価値枠組み、GenAI Value Safety Scale(GVS-Scale)を提案する。
- 参考スコア(独自算出の注目度): 6.541261380941275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of generative AI has brought value- and ethics-related risks to the forefront, making value safety a critical concern while a unified consensus remains lacking. In this work, we propose an internationally inclusive and resilient unified value framework, the GenAI Value Safety Scale (GVS-Scale): Grounded in a lifecycle-oriented perspective, we develop a taxonomy of GenAI value safety risks and construct the GenAI Value Safety Incident Repository (GVSIR), and further derive the GVS-Scale through grounded theory and operationalize it via the GenAI Value Safety Benchmark (GVS-Bench). Experiments on mainstream text generation models reveal substantial variation in value safety performance across models and value categories, indicating uneven and fragmented value alignment in current systems. Our findings highlight the importance of establishing shared safety foundations through dialogue and advancing technical safety mechanisms beyond reactive constraints toward more flexible approaches. Data and evaluation guidelines are available at https://github.com/acl2026/GVS-Bench. This paper includes examples that may be offensive or harmful.
- Abstract(参考訳): 生成AIの急速な発展は、価値と倫理に関するリスクを最前線にもたらす。
本研究は、国際的に包括的で弾力的な統一価値枠組みであるGenAI Value Safety Scale(GVS-Scale)を提案する。我々は、ライフサイクル指向の観点から、GenAI Value Safety Riskの分類を開発し、GenAI Value Safety Incident Repository(GVSIR)を構築し、さらに基礎理論を通じてGVS-Scaleを導出し、GenAI Value Safety Benchmark(GVS-Bench)を介して運用する。
主流のテキスト生成モデルの実験では、モデルとバリューカテゴリ間で価値安全性のパフォーマンスが大幅に変化しており、現在のシステムでは不均一で断片的な値アライメントが示されています。
本研究は,対話による共有安全基盤の確立と,よりフレキシブルなアプローチに向けての反応性制約を超えて,技術安全メカニズムの進展を重要視するものである。
データと評価ガイドラインはhttps://github.com/acl2026/GVS-Bench.comで公開されている。
本論文は、攻撃的または有害な事例を含む。
関連論文リスト
- SafeEvalAgent: Toward Agentic and Self-Evolving Safety Evaluation of LLMs [37.82193156438782]
本稿では, エージェント安全評価の新しいパラダイムとして, 継続的かつ自己進化的なプロセスとしてのリフレーミング評価を提案する。
本稿では、構造化されていないポリシー文書を自律的に取り込み、包括的な安全ベンチマークを生成し、永続的に進化させる、新しいマルチエージェントフレームワークSafeEvalAgentを提案する。
本実験はSafeEvalAgentの有効性を実証し,評価が強まるにつれてモデルの安全性が一貫した低下を示す。
論文 参考訳(メタデータ) (2025-09-30T11:20:41Z) - Shape it Up! Restoring LLM Safety during Finetuning [65.75757313781104]
大型言語モデル(LLM)の微調整は、ユーザ固有のカスタマイズを可能にするが、重大な安全性リスクをもたらす。
動的安全整形(DSS)は,不安全コンテンツを抑えつつ,応答の安全な部分からの学習を強化するための,きめ細かい安全信号を用いたフレームワークである。
STARスコアによって導かれるSTAR-DSSは、微調整リスクを堅牢に軽減し、多様な脅威、データセット、モデルファミリーにまたがる大幅な安全性の向上を提供する。
論文 参考訳(メタデータ) (2025-05-22T18:05:16Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - SafetyAnalyst: Interpretable, Transparent, and Steerable Safety Moderation for AI Behavior [56.10557932893919]
我々は、新しいAI安全モデレーションフレームワークであるSafetyAnalystを紹介する。
AIの振る舞いを考えると、SafetyAnalystはチェーン・オブ・シークレット・推論を使用してその潜在的な結果を分析する。
効果を28個の完全に解釈可能な重みパラメータを使って有害度スコアに集約する。
論文 参考訳(メタデータ) (2024-10-22T03:38:37Z) - SeCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [58.29510889419971]
コード生成大型言語モデル(LLM)のセキュリティリスクと能力を評価するための既存のベンチマークは、いくつかの重要な制限に直面している。
手動で検証し、高品質なシード例から始める、汎用的でスケーラブルなベンチマーク構築フレームワークを導入し、ターゲット突然変異を通じて拡張する。
このフレームワークをPython、C/C++、Javaに適用すると、44のCWEベースのリスクカテゴリと3つのセキュリティ機能にまたがる5.9k以上のサンプルデータセットであるSeCodePLTが構築されます。
論文 参考訳(メタデータ) (2024-10-14T21:17:22Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - SAFETY-J: Evaluating Safety with Critique [24.723999605458832]
SAFETY-Jは、英語と中国語のための二言語生成安全評価器であり、批判に基づく判断である。
人間の介入を最小限に抑えて批評の質を客観的に評価する自動メタ評価ベンチマークを構築した。
SAFETY-Jはよりニュアンスで正確な安全性評価を提供し、複雑なコンテンツシナリオにおける批判的品質と予測信頼性の両面を向上することを示した。
論文 参考訳(メタデータ) (2024-07-24T08:04:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。