論文の概要: Beyond Seen Bounds: Class-Centric Polarization for Single-Domain Generalized Deep Metric Learning
- arxiv url: http://arxiv.org/abs/2601.09121v1
- Date: Wed, 14 Jan 2026 03:44:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.252116
- Title: Beyond Seen Bounds: Class-Centric Polarization for Single-Domain Generalized Deep Metric Learning
- Title(参考訳): 境界を超える: 単一領域の総合的な深層学習のためのクラス中心分極
- Authors: Xin Yuan, Meiqi Wan, Wei Liu, Xin Xu, Zheng Wang,
- Abstract要約: 単ドメイン一般化深度学習(SDG-DML)は、テスト中のカテゴリシフトとドメインシフトの両面での2つの課題に直面している。
一般化可能なDMLモデルを学ぶために,ドメイン分布を動的に拡張・制約する新しいDMLフレームワークであるCenterPolarを提案する。
- 参考スコア(独自算出の注目度): 18.81528824836627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-domain generalized deep metric learning (SDG-DML) faces the dual challenge of both category and domain shifts during testing, limiting real-world applications. Therefore, aiming to learn better generalization ability on both unseen categories and domains is a realistic goal for the SDG-DML task. To deliver the aspiration, existing SDG-DML methods employ the domain expansion-equalization strategy to expand the source data and generate out-of-distribution samples. However, these methods rely on proxy-based expansion, which tends to generate samples clustered near class proxies, failing to simulate the broad and distant domain shifts encountered in practice. To alleviate the problem, we propose CenterPolar, a novel SDG-DML framework that dynamically expands and constrains domain distributions to learn a generalizable DML model for wider target domain distributions. Specifically, \textbf{CenterPolar} contains two collaborative class-centric polarization phases: (1) Class-Centric Centrifugal Expansion ($C^3E$) and (2) Class-Centric Centripetal Constraint ($C^4$). In the first phase, $C^3E$ drives the source domain distribution by shifting the source data away from class centroids using centrifugal expansion to generalize to more unseen domains. In the second phase, to consolidate domain-invariant class information for the generalization ability to unseen categories, $C^4$ pulls all seen and unseen samples toward their class centroids while enforcing inter-class separation via centripetal constraint. Extensive experimental results on widely used CUB-200-2011 Ext., Cars196 Ext., DomainNet, PACS, and Office-Home datasets demonstrate the superiority and effectiveness of our CenterPolar over existing state-of-the-art methods. The code will be released after acceptance.
- Abstract(参考訳): 単一ドメイン一般化深度学習(SDG-DML)は、テスト中のカテゴリシフトとドメインシフトの両面での二重の課題に直面し、現実世界のアプリケーションを制限する。
したがって、未確認のカテゴリとドメインの両方において、より優れた一般化能力の習得を目指すことが、SDG-DMLタスクの現実的な目標である。
既存のSDG-DML手法では、ソースデータを拡張し、アウト・オブ・ディストリビューション・サンプルを生成するために、ドメイン拡張等化戦略を採用している。
しかし、これらの手法はプロキシベースの拡張に依存しており、クラスプロキシの近くでクラスタ化されたサンプルを生成する傾向にあり、実際に遭遇した広い領域と離れた領域のシフトをシミュレートすることができない。
この問題を軽減するために,ドメイン分布を動的に拡張・制約する新しいSDG-DMLフレームワークであるCenterPolarを提案する。
具体的には,(1)クラス中心遠心拡張(C^3E$)と(2)クラス中心遠心制約(C^4$)の2つの協調的なクラス中心偏光位相を含む。
第1フェーズでは、$C^3E$は、遠心展開を用いてソースデータをクラスセントロイドから切り離して、より目に見えない領域に一般化することで、ソース領域の分布を駆動する。
第2フェーズでは、一般化能力を一般化するために、ドメイン不変のクラス情報を統一するために、$C^4$は、遠心性制約によってクラス間の分離を強制しながら、すべての見つからないサンプルを、そのクラスセントロイドへ引き寄せる。
CUB-200-2011 Extの大規模実験結果
車両番号196。
DomainNet、PACS、Office-Homeのデータセットは、既存の最先端メソッドよりもCenterPolarの優位性と有効性を示しています。
コードは受け入れられた後にリリースされる。
関連論文リスト
- Upcycling Models under Domain and Category Shift [95.22147885947732]
グローバルかつ局所的なクラスタリング学習技術(GLC)を導入する。
我々は、異なる対象クラス間での区別を実現するために、新しい1-vs-allグローバルクラスタリングアルゴリズムを設計する。
注目すべきは、最も困難なオープンパーティルセットDAシナリオにおいて、GLCは、VisDAベンチマークでUMADを14.8%上回っていることである。
論文 参考訳(メタデータ) (2023-03-13T13:44:04Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA)は、訓練済みのソースモデルから学習した知識を未確認のターゲットドメインに転送することで、ドメイン適応問題を解決することを目的としている。
既存のほとんどのメソッドは、機能プロトタイプを生成することによって、ターゲットデータに擬似ラベルを割り当てる。
本稿では,PCSRと命名された新しいフレームワークを,クラス内多中心クラスタリングおよび構造規則化戦略を通じてSFDAに取り組むために提案する。
論文 参考訳(メタデータ) (2022-10-14T02:20:48Z) - Semantic-Aware Domain Generalized Segmentation [67.49163582961877]
ソースドメインでトレーニングされたディープモデルは、異なるデータ分布を持つ未確認対象ドメインで評価された場合、一般化に欠ける。
セマンティック・アウェア・正規化(SAN)とセマンティック・アウェア・ホワイトニング(SAW)の2つの新しいモジュールを含むフレームワークを提案する。
提案手法は,様々なバックボーンネットワークにおいて,既存の最先端ネットワークよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-04-02T09:09:59Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
教師なしのドメイン適応は、ラベル付きソースドメインからモデルをトレーニングし、ラベルなしのターゲットドメインで予測することを目的としています。
既存のメソッドは2つのドメインをドメインレベルに直接アライメントするか、あるいは深い機能に基づいてクラスレベルのドメインアライメントを実行する傾向があります。
本稿では,クラスレベルのアライメント手法について述べる。
論文 参考訳(メタデータ) (2021-09-14T09:23:27Z) - Domain Generalization via Semi-supervised Meta Learning [7.722498348924133]
ラベルのないサンプルを活用するための領域一般化法を提案する。
メタ学習アプローチによってトレーニングされ、入力されたソースドメインと見えないターゲットドメイン間の分散シフトを模倣する。
ベンチマークデータセットによる実験結果から,DGは最先端領域の一般化や半教師付き学習方法よりも優れていた。
論文 参考訳(メタデータ) (2020-09-26T18:05:04Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
オープンセットドメイン適応(OSDA)は、ターゲットドメインに未知のクラスが存在することを前提としている。
既存の最先端手法は、より大きなドメインギャップが存在する場合、かなりの性能低下を被ることを示す。
我々は、より大きなドメインギャップに特に対処するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-08T14:20:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。