論文の概要: SERM: Self-Evolving Relevance Model with Agent-Driven Learning from Massive Query Streams
- arxiv url: http://arxiv.org/abs/2601.09515v1
- Date: Wed, 14 Jan 2026 14:31:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.427142
- Title: SERM: Self-Evolving Relevance Model with Agent-Driven Learning from Massive Query Streams
- Title(参考訳): SERM: 大規模クエリストリームからのエージェント駆動学習による自己進化的妥当性モデル
- Authors: Chenglong Wang, Canjia Li, Xingzhao Zhu, Yifu Huo, Huiyu Wang, Weixiong Lin, Yun Yang, Qiaozhi He, Tianhua Zhou, Xiaojia Chang, Jingbo Zhu, Tong Xiao,
- Abstract要約: 本稿では,2つの相補的マルチエージェントモジュールからなる自己進化関連モデル(SERM)を提案する。
我々はSERMを大規模産業環境で評価し、毎日数十億のユーザリクエストを処理している。
- 参考スコア(独自算出の注目度): 53.78257200138774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the dynamically evolving nature of real-world query streams, relevance models struggle to generalize to practical search scenarios. A sophisticated solution is self-evolution techniques. However, in large-scale industrial settings with massive query streams, this technique faces two challenges: (1) informative samples are often sparse and difficult to identify, and (2) pseudo-labels generated by the current model could be unreliable. To address these challenges, in this work, we propose a Self-Evolving Relevance Model approach (SERM), which comprises two complementary multi-agent modules: a multi-agent sample miner, designed to detect distributional shifts and identify informative training samples, and a multi-agent relevance annotator, which provides reliable labels through a two-level agreement framework. We evaluate SERM in a large-scale industrial setting, which serves billions of user requests daily. Experimental results demonstrate that SERM can achieve significant performance gains through iterative self-evolution, as validated by extensive offline multilingual evaluations and online testing.
- Abstract(参考訳): 実世界のクエリストリームの動的に進化する性質のため、関連モデルは実用的な検索シナリオへの一般化に苦慮する。
洗練された解決策は自己進化技術である。
しかし,大規模な問合せストリームを持つ大規模産業環境では,(1)情報的サンプルの識別が困難で,(2)現在のモデルで生成された擬似ラベルの信頼性が低い,という2つの課題に直面している。
これらの課題に対処するため、本研究では、分散シフトを検出して情報的トレーニングサンプルを特定するためのマルチエージェントサンプルマイナと、2レベル合意フレームワークを通じて信頼性の高いラベルを提供するマルチエージェント関連アノテータの2つの相補的なマルチエージェントモジュールからなる、自己進化関連モデルアプローチ(SERM)を提案する。
我々はSERMを大規模産業環境で評価し、毎日数十億のユーザリクエストを処理している。
実験により、SERMは、広範囲なオフライン多言語評価とオンラインテストによって検証され、反復的自己進化によって大きなパフォーマンス向上を達成できることが示されている。
関連論文リスト
- MULTIBENCH++: A Unified and Comprehensive Multimodal Fusion Benchmarking Across Specialized Domains [35.511656323075506]
我々は,マルチモーダル評価のための大規模ドメイン適応型ベンチマークを開発した。
このベンチマークでは,15のモダリティと20の予測タスクを含む,30以上のデータセットを統合している。
また、オープンソース、統一、自動評価パイプラインも開発しました。
論文 参考訳(メタデータ) (2025-11-09T16:37:09Z) - Merge and Guide: Unifying Model Merging and Guided Decoding for Controllable Multi-Objective Generation [49.98025799046136]
Merge-And-GuidEは、ガイド付きデコーディングにモデルマージを利用する2段階のフレームワークである。
ステージ1では、MAGEはガイダンスとベースモデルの互換性の問題を解決する。
ステージ2では、明示的で暗黙的な値モデルを統一的なガイダンスプロキシにマージします。
論文 参考訳(メタデータ) (2025-10-04T11:10:07Z) - Agent4FaceForgery: Multi-Agent LLM Framework for Realistic Face Forgery Detection [108.5042835056188]
この作業では,2つの基本的な問題に対処するため,Agent4FaceForgeryを導入している。
人間の偽造の多様な意図と反復的なプロセスを捉える方法。
ソーシャルメディアの偽造に付随する複雑な、しばしば敵対的な、テキストと画像のインタラクションをモデル化する方法。
論文 参考訳(メタデータ) (2025-09-16T01:05:01Z) - Filling the Gaps: A Multitask Hybrid Multiscale Generative Framework for Missing Modality in Remote Sensing Semantic Segmentation [28.992992584085787]
マルチモーダル学習は、通常の単調モデルと比較して大きな性能向上を示した。
現実のシナリオでは、センサーの故障と悪天候のためにマルチモーダル信号が欠落する可能性がある。
本稿では,これらの制約に対処するために,GEMMNet(Generative-Enhanced MultiModal Learning Network)を提案する。
論文 参考訳(メタデータ) (2025-09-14T05:40:35Z) - Test-Time Scaling Strategies for Generative Retrieval in Multimodal Conversational Recommendations [70.94563079082751]
電子商取引は、複雑なマルチターンユーザーインタラクションを管理する上で、伝統的な製品検索システムの限界を明らかにしている。
本稿では,対話型マルチモーダル製品検索にテスト時間スケーリングを導入する新しいフレームワークを提案する。
提案手法は生成型レトリバー上に構築され,さらに検索精度の向上と,対話を通してユーザ意図の進化と結果の整合性を向上するテストタイムリグレード機構が組み込まれている。
論文 参考訳(メタデータ) (2025-08-25T15:38:56Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
本研究の目的は,マルチエージェントサンプリングによるデータ合成の問題を調べることでギャップを埋めることである。
逐次サンプリングプロセス中にワークフローが反復的に進化する木探索に基づくオーケストレーションエージェント(TOA)を紹介する。
アライメント、機械翻訳、数学的推論に関する実験は、マルチエージェントサンプリングが推論計算スケールとしてシングルエージェントサンプリングを著しく上回ることを示した。
論文 参考訳(メタデータ) (2024-12-22T15:16:44Z) - VDFD: Multi-Agent Value Decomposition Framework with Disentangled World Model [10.36125908359289]
本稿では,Distangled World Modelを用いた新しいモデルベースマルチエージェント強化学習手法であるValue Decomposition Frameworkを提案する。
提案手法は, サンプル効率が高く, 多様なマルチエージェント学習タスクにおいて, 他のベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-08T22:12:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。