論文の概要: DeepResearchEval: An Automated Framework for Deep Research Task Construction and Agentic Evaluation
- arxiv url: http://arxiv.org/abs/2601.09688v1
- Date: Wed, 14 Jan 2026 18:38:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.502275
- Title: DeepResearchEval: An Automated Framework for Deep Research Task Construction and Agentic Evaluation
- Title(参考訳): DeepResearchEval: ディープリサーチタスク構築とエージェント評価のための自動化フレームワーク
- Authors: Yibo Wang, Lei Wang, Yue Deng, Keming Wu, Yao Xiao, Huanjin Yao, Liwei Kang, Hai Ye, Yongcheng Jing, Lidong Bing,
- Abstract要約: DeepResearchEvalは、ディープリサーチタスク構築とエージェント評価のための自動化フレームワークである。
タスク構築のために,多様なユーザプロファイルに固定された現実的で複雑な研究タスクを生成するペルソナ駆動パイプラインを提案する。
評価には,タスク固有の評価次元,基準,重みを動的に導出する適応的ポイントワイド品質評価と,引用が欠落した場合でもWeb検索によるレポート文の自動抽出と検証を行うアクティブ・ファクト・チェッキングの2つの要素からなるエージェントパイプラインを提案する。
- 参考スコア(独自算出の注目度): 56.886936435727854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep research systems are widely used for multi-step web research, analysis, and cross-source synthesis, yet their evaluation remains challenging. Existing benchmarks often require annotation-intensive task construction, rely on static evaluation dimensions, or fail to reliably verify facts when citations are missing. To bridge these gaps, we introduce DeepResearchEval, an automated framework for deep research task construction and agentic evaluation. For task construction, we propose a persona-driven pipeline generating realistic, complex research tasks anchored in diverse user profiles, applying a two-stage filter Task Qualification and Search Necessity to retain only tasks requiring multi-source evidence integration and external retrieval. For evaluation, we propose an agentic pipeline with two components: an Adaptive Point-wise Quality Evaluation that dynamically derives task-specific evaluation dimensions, criteria, and weights conditioned on each generated task, and an Active Fact-Checking that autonomously extracts and verifies report statements via web search, even when citations are missing.
- Abstract(参考訳): 深層研究システムは多段階のWeb研究、分析、およびクロスソース合成に広く利用されているが、その評価は依然として困難である。
既存のベンチマークでは、しばしばアノテーション集約的なタスクの構築、静的評価の次元への依存、あるいは引用が欠落している事実の確実な検証が要求される。
このギャップを埋めるために,DeepResearchEvalを紹介した。
タスク構築のために,多元的エビデンスの統合と外部検索を必要とするタスクのみを保持するために,多種多様なユーザプロファイルに固定された現実的で複雑な研究タスクを生成するペルソナ駆動パイプラインを提案する。
評価には,タスク固有の評価次元,基準,重みを動的に導出する適応的ポイントワイド品質評価と,引用が欠落した場合でもWeb検索によるレポート文の自動抽出と検証を行うアクティブ・ファクト・チェッキングの2つの要素からなるエージェントパイプラインを提案する。
関連論文リスト
- DeepSynth-Eval: Objectively Evaluating Information Consolidation in Deep Survey Writing [53.85037373860246]
本稿では,情報統合能力を客観的に評価するためのベンチマークであるDeep Synth-Evalを紹介する。
一般チェックリスト(実例)と制約チェックリスト(構造体)を用いたきめ細かい評価プロトコルを提案する。
その結果,エージェント型プラン・アンド・ライトは単ターン生成よりも大幅に優れていた。
論文 参考訳(メタデータ) (2026-01-07T03:07:52Z) - A Hierarchical Tree-based approach for creating Configurable and Static Deep Research Agent (Static-DRA) [0.0]
本稿では,階層木に基づく静的ワークフローに基づく新しいソリューションである静的ディープリサーチエージェント(Static-DRA)を紹介する。
コアコントリビューションは、DepthとBreadthという2つのユーザチューニング可能なパラメータの統合である。
エージェントのアーキテクチャは、スーパーバイザ、インディペンデント、およびWorkerエージェントで構成され、効果的なマルチホップ情報検索を促進する。
論文 参考訳(メタデータ) (2025-12-03T15:37:13Z) - LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild [86.6586720134927]
LiveResearchBenchは、日々の生活、企業、アカデミックにまたがる100の専門家によるタスクのベンチマークである。
DeepEvalは、コンテンツレベルの品質とレポートレベルの品質の両方をカバーする包括的なスイートである。
我々の分析は、信頼性と洞察に富んだ深い研究を進めるために必要な、現在の強み、繰り返し発生する障害モード、および重要なシステムコンポーネントを明らかにします。
論文 参考訳(メタデータ) (2025-10-16T02:49:16Z) - A Rigorous Benchmark with Multidimensional Evaluation for Deep Research Agents: From Answers to Reports [24.09178055088843]
Deep Research Agents (DRA)は、タスク分解、クロスソース検索、多段階推論、構造化出力の能力を示す。
本稿では,DRAとレポートスタイルの応答に適した厳密なベンチマークと多次元評価フレームワークを提案する。
このフレームワークは、DRAが生成した長期レポートの総合的な評価を可能にし、セマンティックな品質、トピックの焦点、検索の信頼性のための総合的なスコアリング指標を統合する。
論文 参考訳(メタデータ) (2025-10-02T16:40:02Z) - DRBench: A Realistic Benchmark for Enterprise Deep Research [81.49694432639406]
DRBenchは、エンタープライズ環境で複雑でオープンなディープリサーチタスクでAIエージェントを評価するためのベンチマークである。
セールス、サイバーセキュリティ、コンプライアンスなど10のドメインにわたる15のディープリサーチタスクをリリースしています。
論文 参考訳(メタデータ) (2025-09-30T18:47:20Z) - Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
検索強化生成(RAG)の形式を評価するための新しいベンチマークを提案する。
RAGは、多種多様な、しかし関連するソースに対して、ソースを意識したマルチホップ推論を必要とする。
製品計画、開発、サポートステージをまたいだビジネスをシミュレートする合成データパイプラインを使用して構築します。
論文 参考訳(メタデータ) (2025-06-29T08:34:59Z) - DeepResearch Bench: A Comprehensive Benchmark for Deep Research Agents [30.768405850755602]
DeepResearch Benchは100のPhDレベルの研究タスクからなるベンチマークである。
ディープリサーチエージェントの評価は本質的に複雑で、労働集約的である。
本稿では,人間の判断に強く適合する2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2025-06-13T13:17:32Z) - NeedleBench: Evaluating LLM Retrieval and Reasoning Across Varying Information Densities [51.07379913779232]
NeedleBenchは、長いコンテキストタスクにおける検索と推論のパフォーマンスを評価するためのフレームワークである。
モデルの機能を厳格にテストするために、キーデータポイントをさまざまな深さに埋め込む。
実験の結果,Deep-R1やOpenAIのo3のような推論モデルは,情報密度シナリオにおける連続的な検索と推論に苦労していることがわかった。
論文 参考訳(メタデータ) (2024-07-16T17:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。